Mandolin Chord Chart and Tabs in Modal D Tuning

Ля#7b5, Ля#M7b5, Ля#M7b5, Ля#M7b5, Ля# dom7dim5
Notes: Ля♯, Доx, Ми, Соль♯
x,x,6,8,7,7,0,0 (xx1423..)
x,x,6,8,5,7,0,0 (xx2413..)
x,x,6,8,7,5,0,0 (xx2431..)
x,x,0,8,7,7,6,0 (xx.4231.)
x,x,0,8,7,5,6,0 (xx.4312.)
x,x,0,8,5,7,6,0 (xx.4132.)
x,x,0,8,7,11,0,0 (xx.213..)
x,x,0,8,11,7,0,0 (xx.231..)
x,x,0,8,7,7,0,6 (xx.423.1)
x,x,0,8,7,5,0,6 (xx.431.2)
x,x,0,8,5,7,0,6 (xx.413.2)
x,x,8,8,7,11,0,0 (xx2314..)
x,x,8,8,11,7,0,0 (xx2341..)
x,x,x,8,7,7,6,0 (xxx4231.)
x,x,0,8,11,7,8,0 (xx.2413.)
x,x,x,8,7,5,6,0 (xxx4312.)
x,x,0,8,7,11,8,0 (xx.2143.)
x,x,x,8,5,7,6,0 (xxx4132.)
x,x,x,8,11,7,0,0 (xxx231..)
x,x,x,8,7,11,0,0 (xxx213..)
x,x,x,8,7,7,0,6 (xxx423.1)
x,x,0,8,7,11,0,8 (xx.214.3)
x,x,x,8,7,5,0,6 (xxx431.2)
x,x,x,8,5,7,0,6 (xxx413.2)
x,x,0,8,11,7,0,8 (xx.241.3)
x,x,x,8,7,11,8,0 (xxx2143.)
x,x,x,8,11,7,8,0 (xxx2413.)
x,x,x,8,7,11,0,8 (xxx214.3)
x,x,x,8,11,7,0,8 (xxx241.3)
7,x,0,8,11,7,0,0 (1x.342..)
7,x,0,8,11,11,0,0 (1x.234..)
11,x,0,8,11,7,0,0 (3x.241..)
11,x,0,8,7,11,0,0 (3x.214..)
11,x,0,8,7,7,0,0 (4x.312..)
x,x,6,8,7,x,0,0 (xx132x..)
7,x,0,8,7,11,0,0 (1x.324..)
x,x,6,8,x,7,0,0 (xx13x2..)
x,x,0,8,7,x,6,0 (xx.32x1.)
x,x,6,8,7,7,0,x (xx1423.x)
x,x,0,8,x,7,6,0 (xx.3x21.)
x,x,6,8,7,7,x,0 (xx1423x.)
x,x,6,8,5,7,0,x (xx2413.x)
x,x,6,8,5,7,x,0 (xx2413x.)
x,x,6,8,7,5,0,x (xx2431.x)
x,x,6,8,7,5,x,0 (xx2431x.)
x,x,0,8,7,x,0,6 (xx.32x.1)
x,x,8,8,x,7,6,0 (xx34x21.)
x,x,6,8,x,7,8,0 (xx13x24.)
x,x,6,8,7,x,8,0 (xx132x4.)
x,x,8,8,7,x,6,0 (xx342x1.)
x,x,6,8,7,x,6,0 (xx143x2.)
x,x,0,8,7,7,6,x (xx.4231x)
x,x,6,8,x,7,6,0 (xx14x32.)
x,x,0,8,x,7,0,6 (xx.3x2.1)
x,x,0,8,7,5,6,x (xx.4312x)
x,x,0,8,5,7,6,x (xx.4132x)
x,x,0,8,7,11,0,x (xx.213.x)
x,x,0,8,11,7,0,x (xx.231.x)
x,x,0,8,11,7,x,0 (xx.231x.)
x,x,0,8,7,11,x,0 (xx.213x.)
x,x,0,8,7,7,x,6 (xx.423x1)
x,x,0,8,x,7,6,8 (xx.3x214)
x,x,6,8,x,7,0,8 (xx13x2.4)
x,x,0,8,x,7,8,6 (xx.3x241)
x,x,8,8,7,x,0,6 (xx342x.1)
x,x,6,8,7,x,0,6 (xx143x.2)
x,x,8,8,x,7,0,6 (xx34x2.1)
x,x,6,8,x,7,0,6 (xx14x3.2)
x,x,0,8,7,x,8,6 (xx.32x41)
x,x,0,8,x,7,6,6 (xx.4x312)
x,x,0,8,7,x,6,6 (xx.43x12)
x,x,6,8,7,x,0,8 (xx132x.4)
x,x,0,8,7,x,6,8 (xx.32x14)
x,x,0,8,5,7,x,6 (xx.413x2)
x,x,x,8,7,x,6,0 (xxx32x1.)
x,x,0,8,7,5,x,6 (xx.431x2)
x,x,x,8,x,7,6,0 (xxx3x21.)
x,x,8,8,7,11,x,0 (xx2314x.)
x,x,8,8,11,7,0,x (xx2341.x)
x,x,8,8,11,7,x,0 (xx2341x.)
x,x,8,8,7,11,0,x (xx2314.x)
x,x,x,8,x,7,0,6 (xxx3x2.1)
x,x,x,8,7,x,0,6 (xxx32x.1)
x,x,x,8,5,7,6,x (xxx4132x)
x,x,0,8,7,11,8,x (xx.2143x)
x,x,x,8,7,5,6,x (xxx4312x)
x,x,0,8,11,7,8,x (xx.2413x)
x,x,x,8,7,11,x,0 (xxx213x.)
x,x,x,8,11,7,0,x (xxx231.x)
x,x,x,8,7,11,0,x (xxx213.x)
x,x,x,8,11,7,x,0 (xxx231x.)
x,x,0,8,7,11,x,8 (xx.214x3)
x,x,0,8,11,7,x,8 (xx.241x3)
x,x,x,8,5,7,x,6 (xxx413x2)
x,x,x,8,7,5,x,6 (xxx431x2)
7,x,6,8,7,x,0,0 (2x143x..)
5,x,6,8,7,x,0,0 (1x243x..)
7,x,6,8,5,x,0,0 (3x241x..)
7,x,6,8,x,7,0,0 (2x14x3..)
5,x,6,8,x,7,0,0 (1x24x3..)
7,x,6,8,x,5,0,0 (3x24x1..)
11,x,0,8,7,x,0,0 (3x.21x..)
7,x,0,8,11,x,0,0 (1x.23x..)
7,x,0,8,7,x,6,0 (2x.43x1.)
7,x,0,8,x,7,6,0 (2x.4x31.)
7,x,0,8,5,x,6,0 (3x.41x2.)
7,x,0,8,x,5,6,0 (3x.4x12.)
5,x,0,8,x,7,6,0 (1x.4x32.)
5,x,0,8,7,x,6,0 (1x.43x2.)
11,x,0,8,x,7,0,0 (3x.2x1..)
7,x,8,8,11,x,0,0 (1x234x..)
7,x,0,8,x,11,0,0 (1x.2x3..)
11,x,8,8,7,x,0,0 (4x231x..)
7,x,0,8,x,7,0,6 (2x.4x3.1)
7,x,0,8,7,x,0,6 (2x.43x.1)
5,x,0,8,x,7,0,6 (1x.4x3.2)
7,x,0,8,x,5,0,6 (3x.4x1.2)
7,x,0,8,5,x,0,6 (3x.41x.2)
5,x,0,8,7,x,0,6 (1x.43x.2)
11,x,0,8,7,7,0,x (4x.312.x)
11,x,8,8,x,7,0,0 (4x23x1..)
x,x,6,8,7,x,0,x (xx132x.x)
7,x,x,8,11,11,0,0 (1xx234..)
7,x,0,8,7,11,0,x (1x.324.x)
11,x,0,8,7,11,0,x (3x.214.x)
11,x,x,8,11,7,0,0 (3xx241..)
7,x,x,8,11,7,0,0 (1xx342..)
7,x,0,8,7,11,x,0 (1x.324x.)
11,x,0,8,7,11,x,0 (3x.214x.)
7,x,0,8,11,7,0,x (1x.342.x)
x,x,6,8,7,x,x,0 (xx132xx.)
7,x,0,8,11,11,x,0 (1x.234x.)
11,x,0,8,11,7,0,x (3x.241.x)
11,x,0,8,7,7,x,0 (4x.312x.)
11,x,x,8,7,11,0,0 (3xx214..)
7,x,x,8,7,11,0,0 (1xx324..)
7,x,0,8,11,11,0,x (1x.234.x)
11,x,x,8,7,7,0,0 (4xx312..)
7,x,8,8,x,11,0,0 (1x23x4..)
7,x,0,8,11,7,x,0 (1x.342x.)
11,x,0,8,11,7,x,0 (3x.241x.)
11,x,0,8,7,x,8,0 (4x.21x3.)
11,x,0,8,x,7,8,0 (4x.2x13.)
7,x,0,8,11,x,8,0 (1x.24x3.)
x,x,6,8,x,7,x,0 (xx13x2x.)
7,x,0,8,x,11,8,0 (1x.2x43.)
x,x,6,8,x,7,0,x (xx13x2.x)
11,x,0,8,7,x,0,8 (4x.21x.3)
7,x,0,8,x,11,0,8 (1x.2x4.3)
11,x,0,8,x,7,0,8 (4x.2x1.3)
x,x,0,8,x,7,6,x (xx.3x21x)
x,x,0,8,7,x,6,x (xx.32x1x)
7,x,0,8,11,x,0,8 (1x.24x.3)
x,x,6,8,5,7,x,x (xx2413xx)
x,x,6,8,7,5,x,x (xx2431xx)
x,x,0,8,7,x,x,6 (xx.32xx1)
x,x,0,8,x,7,x,6 (xx.3x2x1)
x,x,0,8,7,11,x,x (xx.213xx)
x,x,0,8,11,7,x,x (xx.231xx)
7,x,6,8,x,x,0,0 (2x13xx..)
7,x,6,8,7,x,x,0 (2x143xx.)
7,x,6,8,7,x,0,x (2x143x.x)
7,x,6,8,5,5,x,x (3x2411xx)
5,x,6,8,7,x,0,x (1x243x.x)
7,x,6,8,5,x,x,0 (3x241xx.)
5,x,6,8,7,x,x,0 (1x243xx.)
7,x,6,8,5,x,0,x (3x241x.x)
5,x,6,8,5,7,x,x (1x2413xx)
5,x,6,8,7,5,x,x (1x2431xx)
7,x,0,8,x,x,6,0 (2x.3xx1.)
7,x,6,8,x,7,0,x (2x14x3.x)
7,x,6,8,x,7,x,0 (2x14x3x.)
5,x,x,8,5,7,6,x (1xx4132x)
7,x,6,8,x,5,0,x (3x24x1.x)
7,x,6,8,x,5,x,0 (3x24x1x.)
5,x,6,8,x,7,0,x (1x24x3.x)
5,x,6,8,x,7,x,0 (1x24x3x.)
5,x,x,8,7,5,6,x (1xx4312x)
7,x,x,8,5,5,6,x (3xx4112x)
7,x,0,8,11,x,0,x (1x.23x.x)
7,x,0,8,11,x,x,0 (1x.23xx.)
11,x,0,8,7,x,x,0 (3x.21xx.)
11,x,x,8,7,x,0,0 (3xx21x..)
7,x,x,8,11,x,0,0 (1xx23x..)
11,x,0,8,7,x,0,x (3x.21x.x)
7,x,x,8,x,7,6,0 (2xx4x31.)
7,x,0,8,7,x,6,x (2x.43x1x)
7,x,0,8,x,7,6,x (2x.4x31x)
7,x,x,8,7,x,6,0 (2xx43x1.)
7,x,6,8,x,x,8,0 (2x13xx4.)
7,x,0,8,x,x,0,6 (2x.3xx.1)
7,x,8,8,x,x,6,0 (2x34xx1.)
7,x,6,8,x,x,6,0 (3x14xx2.)
7,x,0,8,x,5,6,x (3x.4x12x)
7,x,x,8,x,5,6,0 (3xx4x12.)
7,x,x,8,5,5,x,6 (3xx411x2)
5,x,0,8,7,x,6,x (1x.43x2x)
5,x,x,8,7,x,6,0 (1xx43x2.)
5,x,0,8,x,7,6,x (1x.4x32x)
5,x,x,8,x,7,6,0 (1xx4x32.)
7,x,x,8,5,x,6,0 (3xx41x2.)
5,x,x,8,7,5,x,6 (1xx431x2)
7,x,0,8,5,x,6,x (3x.41x2x)
5,x,x,8,5,7,x,6 (1xx413x2)
11,x,8,8,7,x,0,x (4x231x.x)
7,x,0,8,x,11,0,x (1x.2x3.x)
11,x,8,8,7,x,x,0 (4x231xx.)
7,x,8,8,11,x,x,0 (1x234xx.)
7,x,x,8,x,11,0,0 (1xx2x3..)
11,x,0,8,x,7,x,0 (3x.2x1x.)
7,x,0,8,x,11,x,0 (1x.2x3x.)
11,x,0,8,x,7,0,x (3x.2x1.x)
11,x,x,8,x,7,0,0 (3xx2x1..)
7,x,8,8,11,x,0,x (1x234x.x)
7,x,x,8,x,7,0,6 (2xx4x3.1)
7,x,0,8,x,x,8,6 (2x.3xx41)
7,x,8,8,x,x,0,6 (2x34xx.1)
7,x,x,8,7,x,0,6 (2xx43x.1)
7,x,6,8,x,x,0,6 (3x14xx.2)
7,x,0,8,x,x,6,8 (2x.3xx14)
7,x,6,8,x,x,0,8 (2x13xx.4)
7,x,0,8,x,x,6,6 (3x.4xx12)
7,x,0,8,x,7,x,6 (2x.4x3x1)
7,x,0,8,7,x,x,6 (2x.43xx1)
7,x,0,8,5,x,x,6 (3x.41xx2)
5,x,0,8,x,7,x,6 (1x.4x3x2)
7,x,x,8,5,x,0,6 (3xx41x.2)
5,x,0,8,7,x,x,6 (1x.43xx2)
5,x,x,8,7,x,0,6 (1xx43x.2)
7,x,0,8,x,5,x,6 (3x.4x1x2)
7,x,x,8,x,5,0,6 (3xx4x1.2)
5,x,x,8,x,7,0,6 (1xx4x3.2)
11,x,x,8,7,11,x,0 (3xx214x.)
7,x,8,8,x,11,0,x (1x23x4.x)
7,x,x,8,7,11,0,x (1xx324.x)
7,x,0,8,11,7,x,x (1x.342xx)
11,x,x,8,7,11,0,x (3xx214.x)
7,x,x,8,11,11,0,x (1xx234.x)
7,x,0,8,11,11,x,x (1x.234xx)
11,x,x,8,7,7,0,x (4xx312.x)
11,x,0,8,11,7,x,x (3x.241xx)
7,x,x,8,11,11,x,0 (1xx234x.)
11,x,0,8,7,7,x,x (4x.312xx)
11,x,x,8,11,7,0,x (3xx241.x)
7,x,x,8,7,11,x,0 (1xx324x.)
7,x,x,8,11,7,0,x (1xx342.x)
7,x,0,8,7,11,x,x (1x.324xx)
11,x,0,8,7,11,x,x (3x.214xx)
11,x,8,8,x,7,x,0 (4x23x1x.)
11,x,x,8,7,7,x,0 (4xx312x.)
11,x,8,8,x,7,0,x (4x23x1.x)
7,x,x,8,11,7,x,0 (1xx342x.)
11,x,x,8,11,7,x,0 (3xx241x.)
7,x,8,8,x,11,x,0 (1x23x4x.)
7,x,0,8,11,x,8,x (1x.24x3x)
7,x,x,8,11,x,8,0 (1xx24x3.)
11,x,0,8,x,7,8,x (4x.2x13x)
7,x,0,8,x,11,8,x (1x.2x43x)
11,x,x,8,7,x,8,0 (4xx21x3.)
11,x,x,8,x,7,8,0 (4xx2x13.)
11,x,0,8,7,x,8,x (4x.21x3x)
7,x,x,8,x,11,8,0 (1xx2x43.)
7,x,x,8,x,11,0,8 (1xx2x4.3)
11,x,0,8,7,x,x,8 (4x.21xx3)
7,x,0,8,11,x,x,8 (1x.24xx3)
11,x,x,8,x,7,0,8 (4xx2x1.3)
7,x,x,8,11,x,0,8 (1xx24x.3)
11,x,0,8,x,7,x,8 (4x.2x1x3)
11,x,x,8,7,x,0,8 (4xx21x.3)
7,x,0,8,x,11,x,8 (1x.2x4x3)
7,x,6,8,x,x,0,x (2x13xx.x)
7,x,6,8,x,x,x,0 (2x13xxx.)
5,x,6,8,7,x,x,x (1x243xxx)
7,x,6,8,5,x,x,x (3x241xxx)
7,x,0,8,x,x,6,x (2x.3xx1x)
7,x,x,8,x,x,6,0 (2xx3xx1.)
7,x,6,8,x,5,x,x (3x24x1xx)
5,x,6,8,x,7,x,x (1x24x3xx)
11,x,x,8,7,x,0,x (3xx21x.x)
7,x,0,8,11,x,x,x (1x.23xxx)
11,x,x,8,7,x,x,0 (3xx21xx.)
7,x,x,8,11,x,x,0 (1xx23xx.)
7,x,x,8,11,x,0,x (1xx23x.x)
11,x,0,8,7,x,x,x (3x.21xxx)
7,x,0,8,x,x,x,6 (2x.3xxx1)
7,x,x,8,x,x,0,6 (2xx3xx.1)
7,x,x,8,x,5,6,x (3xx4x12x)
5,x,x,8,x,7,6,x (1xx4x32x)
5,x,x,8,7,x,6,x (1xx43x2x)
7,x,x,8,5,x,6,x (3xx41x2x)
11,x,0,8,x,7,x,x (3x.2x1xx)
7,x,0,8,x,11,x,x (1x.2x3xx)
11,x,x,8,x,7,0,x (3xx2x1.x)
7,x,x,8,x,11,x,0 (1xx2x3x.)
11,x,x,8,x,7,x,0 (3xx2x1x.)
7,x,x,8,x,11,0,x (1xx2x3.x)
5,x,x,8,7,x,x,6 (1xx43xx2)
7,x,x,8,x,5,x,6 (3xx4x1x2)
5,x,x,8,x,7,x,6 (1xx4x3x2)
7,x,x,8,5,x,x,6 (3xx41xx2)