Mandolin Chord Chart and Tabs in Modal D Tuning

Ля#6/9, Ля#M6/9
Notes: Ля♯, Доx, Ми♯, Фаx, Си♯
x,x,10,8,8,10,0,0 (xx3124..)
x,x,10,8,10,8,0,0 (xx3142..)
x,x,0,8,10,8,10,0 (xx.1324.)
x,x,0,8,8,10,10,0 (xx.1234.)
x,x,0,8,10,8,0,10 (xx.132.4)
x,x,0,8,8,10,0,10 (xx.123.4)
x,x,x,8,10,8,10,0 (xxx1324.)
x,x,x,8,8,10,10,0 (xxx1234.)
x,x,x,8,8,10,0,10 (xxx123.4)
x,x,x,8,10,8,0,10 (xxx132.4)
x,1,3,5,3,x,0,0 (x1243x..)
x,1,5,3,3,x,0,0 (x1423x..)
x,1,5,3,x,3,0,0 (x142x3..)
x,1,3,5,x,3,0,0 (x124x3..)
x,1,0,3,3,x,5,0 (x1.23x4.)
x,1,3,0,3,x,5,0 (x12.3x4.)
x,1,0,5,3,x,3,0 (x1.42x3.)
x,1,5,0,3,x,3,0 (x14.2x3.)
x,1,0,3,x,3,5,0 (x1.2x34.)
x,1,3,0,x,3,5,0 (x12.x34.)
x,1,5,0,x,3,3,0 (x14.x23.)
x,1,0,5,x,3,3,0 (x1.4x23.)
x,1,0,0,3,x,3,5 (x1..2x34)
x,1,0,0,3,x,5,3 (x1..2x43)
x,1,0,0,x,3,5,3 (x1..x243)
x,1,0,3,x,3,0,5 (x1.2x3.4)
x,1,5,0,3,x,0,3 (x14.2x.3)
x,1,3,0,x,3,0,5 (x12.x3.4)
x,1,5,0,x,3,0,3 (x14.x2.3)
x,1,0,5,x,3,0,3 (x1.4x2.3)
x,1,0,0,x,3,3,5 (x1..x234)
x,1,0,3,3,x,0,5 (x1.23x.4)
x,1,3,0,3,x,0,5 (x12.3x.4)
x,1,0,5,3,x,0,3 (x1.42x.3)
x,x,3,x,3,1,5,0 (xx2x314.)
x,x,5,x,1,3,3,0 (xx4x123.)
x,x,5,x,3,1,3,0 (xx4x213.)
x,x,3,x,1,3,5,0 (xx2x134.)
x,x,3,x,1,3,0,5 (xx2x13.4)
x,x,0,x,3,1,3,5 (xx.x2134)
x,x,0,x,3,1,5,3 (xx.x2143)
x,x,5,x,3,1,0,3 (xx4x21.3)
x,x,5,x,1,3,0,3 (xx4x12.3)
x,x,3,x,3,1,0,5 (xx2x31.4)
x,x,0,x,1,3,3,5 (xx.x1234)
x,x,0,x,1,3,5,3 (xx.x1243)
x,x,10,8,10,8,0,x (xx3142.x)
x,x,10,8,8,10,x,0 (xx3124x.)
x,x,10,8,10,8,x,0 (xx3142x.)
x,x,10,8,8,10,0,x (xx3124.x)
x,x,0,8,10,8,10,x (xx.1324x)
x,x,0,8,8,10,10,x (xx.1234x)
x,x,0,8,10,8,x,10 (xx.132x4)
x,x,0,8,8,10,x,10 (xx.123x4)
3,1,5,3,x,x,0,0 (2143xx..)
3,1,3,5,x,x,0,0 (2134xx..)
3,1,0,5,x,x,3,0 (21.4xx3.)
3,1,0,3,x,x,5,0 (21.3xx4.)
3,1,3,0,x,x,5,0 (213.xx4.)
3,1,5,0,x,x,3,0 (214.xx3.)
x,1,3,5,3,x,x,0 (x1243xx.)
x,1,5,3,3,x,x,0 (x1423xx.)
x,1,5,3,3,x,0,x (x1423x.x)
x,1,3,5,3,x,0,x (x1243x.x)
8,x,10,8,10,x,0,0 (1x324x..)
10,x,10,8,8,x,0,0 (3x412x..)
3,1,0,3,x,x,0,5 (21.3xx.4)
3,1,0,5,x,x,0,3 (21.4xx.3)
3,1,5,0,x,x,0,3 (214.xx.3)
3,1,0,0,x,x,5,3 (21..xx43)
3,1,3,0,x,x,0,5 (213.xx.4)
3,1,0,0,x,x,3,5 (21..xx34)
x,1,3,5,x,3,x,0 (x124x3x.)
x,1,3,5,x,3,0,x (x124x3.x)
x,1,5,3,x,3,x,0 (x142x3x.)
x,1,5,3,x,3,0,x (x142x3.x)
8,x,10,8,x,10,0,0 (1x32x4..)
10,x,10,8,x,8,0,0 (3x41x2..)
x,1,x,5,3,x,3,0 (x1x42x3.)
x,1,x,3,3,x,5,0 (x1x23x4.)
x,1,5,x,3,x,3,0 (x14x2x3.)
x,1,x,5,x,3,3,0 (x1x4x23.)
x,1,3,x,3,x,5,0 (x12x3x4.)
x,1,0,3,x,3,5,x (x1.2x34x)
x,1,5,x,x,3,3,0 (x14xx23.)
x,1,3,0,x,3,5,x (x12.x34x)
x,1,x,3,x,3,5,0 (x1x2x34.)
x,1,0,3,3,x,5,x (x1.23x4x)
x,1,3,0,3,x,5,x (x12.3x4x)
x,1,0,5,x,3,3,x (x1.4x23x)
x,1,5,0,x,3,3,x (x14.x23x)
x,1,0,5,3,x,3,x (x1.42x3x)
x,1,5,0,3,x,3,x (x14.2x3x)
x,1,3,x,x,3,5,0 (x12xx34.)
10,x,0,8,8,x,10,0 (3x.12x4.)
10,x,0,8,x,8,10,0 (3x.1x24.)
8,x,0,8,x,10,10,0 (1x.2x34.)
8,x,0,8,10,x,10,0 (1x.23x4.)
x,1,x,5,x,3,0,3 (x1x4x2.3)
x,1,3,0,x,3,x,5 (x12.x3x4)
x,1,0,5,3,x,x,3 (x1.42xx3)
x,1,5,0,x,3,x,3 (x14.x2x3)
x,1,0,5,x,3,x,3 (x1.4x2x3)
x,1,x,0,x,3,3,5 (x1x.x234)
x,1,0,x,x,3,3,5 (x1.xx234)
x,1,x,0,3,x,3,5 (x1x.2x34)
x,1,5,x,3,x,0,3 (x14x2x.3)
x,1,x,5,3,x,0,3 (x1x42x.3)
x,1,0,x,3,x,3,5 (x1.x2x34)
x,1,5,x,x,3,0,3 (x14xx2.3)
x,1,5,0,3,x,x,3 (x14.2xx3)
x,1,x,3,x,3,0,5 (x1x2x3.4)
x,1,0,3,3,x,x,5 (x1.23xx4)
x,1,3,x,x,3,0,5 (x12xx3.4)
x,1,0,x,3,x,5,3 (x1.x2x43)
x,1,x,0,3,x,5,3 (x1x.2x43)
x,1,3,0,3,x,x,5 (x12.3xx4)
x,1,x,3,3,x,0,5 (x1x23x.4)
x,1,0,x,x,3,5,3 (x1.xx243)
x,1,x,0,x,3,5,3 (x1x.x243)
x,1,3,x,3,x,0,5 (x12x3x.4)
x,1,0,3,x,3,x,5 (x1.2x3x4)
8,x,0,8,x,10,0,10 (1x.2x3.4)
8,x,0,8,10,x,0,10 (1x.23x.4)
10,x,0,8,x,8,0,10 (3x.1x2.4)
10,x,0,8,8,x,0,10 (3x.12x.4)
3,1,3,5,x,x,0,x (2134xx.x)
3,1,3,5,x,x,x,0 (2134xxx.)
3,1,5,3,x,x,x,0 (2143xxx.)
3,1,5,3,x,x,0,x (2143xx.x)
3,x,3,x,1,x,5,0 (2x3x1x4.)
3,1,5,0,x,x,3,x (214.xx3x)
1,x,5,x,3,x,3,0 (1x4x2x3.)
3,1,0,5,x,x,3,x (21.4xx3x)
3,x,5,x,1,x,3,0 (2x4x1x3.)
3,1,x,3,x,x,5,0 (21x3xx4.)
3,1,3,0,x,x,5,x (213.xx4x)
3,1,3,x,x,x,5,0 (213xxx4.)
1,x,5,x,x,3,3,0 (1x4xx23.)
3,1,5,x,x,x,3,0 (214xxx3.)
3,x,3,x,x,1,5,0 (2x3xx14.)
3,1,0,3,x,x,5,x (21.3xx4x)
3,x,5,x,x,1,3,0 (2x4xx13.)
1,x,3,x,3,x,5,0 (1x2x3x4.)
1,x,3,x,x,3,5,0 (1x2xx34.)
3,1,x,5,x,x,3,0 (21x4xx3.)
10,x,10,8,8,x,0,x (3x412x.x)
8,x,10,8,10,x,x,0 (1x324xx.)
10,x,10,8,8,x,x,0 (3x412xx.)
8,x,10,8,10,x,0,x (1x324x.x)
1,x,3,x,3,x,0,5 (1x2x3x.4)
3,1,0,3,x,x,x,5 (21.3xxx4)
3,1,3,0,x,x,x,5 (213.xxx4)
1,x,0,x,x,3,5,3 (1x.xx243)
3,1,x,3,x,x,0,5 (21x3xx.4)
3,x,3,x,x,1,0,5 (2x3xx1.4)
3,x,0,x,x,1,5,3 (2x.xx143)
1,x,3,x,x,3,0,5 (1x2xx3.4)
1,x,0,x,3,x,5,3 (1x.x2x43)
3,x,0,x,1,x,5,3 (2x.x1x43)
3,1,x,0,x,x,5,3 (21x.xx43)
3,1,3,x,x,x,0,5 (213xxx.4)
3,1,0,x,x,x,3,5 (21.xxx34)
3,1,x,0,x,x,3,5 (21x.xx34)
1,x,5,x,x,3,0,3 (1x4xx2.3)
3,x,0,x,1,x,3,5 (2x.x1x34)
1,x,0,x,3,x,3,5 (1x.x2x34)
3,x,5,x,x,1,0,3 (2x4xx1.3)
1,x,5,x,3,x,0,3 (1x4x2x.3)
3,x,5,x,1,x,0,3 (2x4x1x.3)
3,x,0,x,x,1,3,5 (2x.xx134)
3,1,x,5,x,x,0,3 (21x4xx.3)
1,x,0,x,x,3,3,5 (1x.xx234)
3,x,3,x,1,x,0,5 (2x3x1x.4)
3,1,5,x,x,x,0,3 (214xxx.3)
3,1,0,5,x,x,x,3 (21.4xxx3)
3,1,5,0,x,x,x,3 (214.xxx3)
3,1,0,x,x,x,5,3 (21.xxx43)
10,x,10,8,x,8,0,x (3x41x2.x)
8,x,10,8,x,10,x,0 (1x32x4x.)
8,x,10,8,x,10,0,x (1x32x4.x)
10,x,10,8,x,8,x,0 (3x41x2x.)
8,x,x,8,x,10,10,0 (1xx2x34.)
10,x,0,8,8,x,10,x (3x.12x4x)
8,x,0,8,10,x,10,x (1x.23x4x)
10,x,0,8,x,8,10,x (3x.1x24x)
8,x,0,8,x,10,10,x (1x.2x34x)
10,x,x,8,8,x,10,0 (3xx12x4.)
8,x,x,8,10,x,10,0 (1xx23x4.)
10,x,x,8,x,8,10,0 (3xx1x24.)
8,x,0,8,10,x,x,10 (1x.23xx4)
10,x,0,8,8,x,x,10 (3x.12xx4)
10,x,x,8,8,x,0,10 (3xx12x.4)
10,x,0,8,x,8,x,10 (3x.1x2x4)
8,x,x,8,x,10,0,10 (1xx2x3.4)
8,x,x,8,10,x,0,10 (1xx23x.4)
8,x,0,8,x,10,x,10 (1x.2x3x4)
10,x,x,8,x,8,0,10 (3xx1x2.4)