Mandolin Chord Chart and Tabs in Modal D Tuning

Фа6, ФаM6, Фа maj6
Notes: Фа, Ля, До, Ре
x,x,x,3,3,0,3,0 (xxx12.3.)
x,x,x,3,0,3,3,0 (xxx1.23.)
x,x,x,3,0,3,0,3 (xxx1.2.3)
x,x,x,3,3,0,0,3 (xxx12..3)
x,x,x,3,3,5,3,7 (xxx11213)
x,x,x,3,3,5,7,3 (xxx11231)
x,x,x,3,5,3,7,3 (xxx12131)
x,x,x,3,0,3,7,0 (xxx1.23.)
x,x,x,3,3,0,7,0 (xxx12.3.)
x,x,x,3,5,3,3,7 (xxx12113)
x,x,3,3,0,3,7,0 (xx12.34.)
x,x,7,3,0,3,3,0 (xx41.23.)
x,x,7,3,3,0,3,0 (xx412.3.)
x,x,3,3,3,0,7,0 (xx123.4.)
x,x,x,3,3,0,0,7 (xxx12..3)
x,x,x,3,0,3,0,7 (xxx1.2.3)
x,x,0,3,0,3,3,7 (xx.1.234)
x,x,3,3,3,0,0,7 (xx123..4)
x,x,0,3,3,0,3,7 (xx.12.34)
x,x,7,3,3,0,0,3 (xx412..3)
x,x,7,3,0,3,0,3 (xx41.2.3)
x,x,0,3,3,0,7,3 (xx.12.43)
x,x,0,3,0,3,7,3 (xx.1.243)
x,x,3,3,0,3,0,7 (xx12.3.4)
x,x,3,3,3,0,x,0 (xx123.x.)
x,x,3,3,3,0,0,x (xx123..x)
x,x,3,3,0,3,x,0 (xx12.3x.)
x,x,3,3,0,3,0,x (xx12.3.x)
x,x,0,3,3,0,3,x (xx.12.3x)
x,x,0,3,0,3,3,x (xx.1.23x)
x,x,0,3,3,0,x,3 (xx.12.x3)
x,x,0,3,0,3,x,3 (xx.1.2x3)
x,8,10,10,8,0,x,0 (x1342.x.)
x,x,7,3,3,0,x,0 (xx312.x.)
x,x,7,3,3,0,0,x (xx312..x)
x,8,10,10,8,0,0,x (x1342..x)
x,8,7,10,8,0,x,0 (x2143.x.)
x,8,7,10,8,0,0,x (x2143..x)
x,x,7,3,0,3,x,0 (xx31.2x.)
x,x,7,3,3,5,3,x (xx31121x)
x,8,10,10,0,8,x,0 (x134.2x.)
x,8,10,10,0,8,0,x (x134.2.x)
x,x,3,3,3,5,7,x (xx11123x)
x,x,7,3,0,3,0,x (xx31.2.x)
x,x,3,3,5,3,7,x (xx11213x)
x,x,7,3,5,3,3,x (xx31211x)
x,8,7,10,0,8,0,x (x214.3.x)
x,8,7,10,0,8,x,0 (x214.3x.)
x,x,0,3,3,0,7,x (xx.12.3x)
x,x,7,3,3,5,x,3 (xx3112x1)
x,x,7,3,5,3,x,3 (xx3121x1)
x,8,0,10,0,8,10,x (x1.3.24x)
x,8,x,10,8,0,10,0 (x1x32.4.)
x,x,3,3,5,3,x,7 (xx1121x3)
x,x,3,3,3,5,x,7 (xx1112x3)
x,8,x,10,0,8,10,0 (x1x3.24.)
x,8,0,10,8,0,10,x (x1.32.4x)
x,x,0,3,0,3,7,x (xx.1.23x)
x,8,x,10,0,8,7,0 (x2x4.31.)
x,8,10,x,0,8,7,0 (x24x.31.)
x,8,x,10,8,0,7,0 (x2x43.1.)
x,8,7,x,8,0,10,0 (x21x3.4.)
x,8,0,10,0,8,7,x (x2.4.31x)
x,8,10,x,8,0,7,0 (x24x3.1.)
x,8,7,x,0,8,10,0 (x21x.34.)
x,8,0,10,8,0,7,x (x2.43.1x)
x,x,0,3,0,3,x,7 (xx.1.2x3)
x,8,0,10,0,8,x,10 (x1.3.2x4)
x,x,0,3,3,0,x,7 (xx.12.x3)
x,8,x,10,0,8,0,10 (x1x3.2.4)
x,8,0,10,8,0,x,10 (x1.32.x4)
x,8,x,10,8,0,0,10 (x1x32..4)
x,8,10,x,8,0,0,7 (x24x3..1)
x,8,0,x,0,8,7,10 (x2.x.314)
x,8,0,10,0,8,x,7 (x2.4.3x1)
x,8,0,x,8,0,7,10 (x2.x3.14)
x,8,0,x,8,0,10,7 (x2.x3.41)
x,8,0,x,0,8,10,7 (x2.x.341)
x,8,0,10,8,0,x,7 (x2.43.x1)
x,8,x,10,8,0,0,7 (x2x43..1)
x,8,7,x,0,8,0,10 (x21x.3.4)
x,8,10,x,0,8,0,7 (x24x.3.1)
x,8,7,x,8,0,0,10 (x21x3..4)
x,8,x,10,0,8,0,7 (x2x4.3.1)
8,8,10,10,0,x,x,0 (1234.xx.)
8,8,10,10,x,0,x,0 (1234x.x.)
8,8,10,10,0,x,0,x (1234.x.x)
8,8,10,10,x,0,0,x (1234x..x)
8,8,7,10,0,x,x,0 (2314.xx.)
8,8,7,10,x,0,0,x (2314x..x)
8,8,7,10,0,x,0,x (2314.x.x)
x,8,10,x,8,0,x,0 (x13x2.x.)
x,8,10,x,8,0,0,x (x13x2..x)
8,8,7,10,x,0,x,0 (2314x.x.)
0,8,10,10,8,x,x,0 (.1342xx.)
0,8,10,10,8,x,0,x (.1342x.x)
0,8,7,10,8,x,0,x (.2143x.x)
x,8,10,x,0,8,x,0 (x13x.2x.)
x,8,10,x,0,8,0,x (x13x.2.x)
0,8,7,10,8,x,x,0 (.2143xx.)
0,8,10,10,x,8,0,x (.134x2.x)
0,8,10,10,x,8,x,0 (.134x2x.)
0,8,7,10,x,8,0,x (.214x3.x)
x,8,x,x,0,8,10,0 (x1xx.23.)
x,8,0,x,0,8,10,x (x1.x.23x)
x,8,0,x,8,0,10,x (x1.x2.3x)
x,8,x,x,8,0,10,0 (x1xx2.3.)
0,8,7,10,x,8,x,0 (.214x3x.)
8,8,0,10,x,0,10,x (12.3x.4x)
0,8,x,10,x,8,10,0 (.1x3x24.)
8,8,x,10,0,x,10,0 (12x3.x4.)
8,8,0,10,0,x,10,x (12.3.x4x)
0,8,0,10,x,8,10,x (.1.3x24x)
8,8,x,10,x,0,10,0 (12x3x.4.)
0,8,x,10,8,x,10,0 (.1x32x4.)
0,8,0,10,8,x,10,x (.1.32x4x)
3,x,7,3,0,x,3,0 (1x42.x3.)
3,x,3,3,x,0,7,0 (1x23x.4.)
0,x,7,3,3,x,3,0 (.x412x3.)
3,x,7,3,x,0,3,0 (1x42x.3.)
0,x,3,3,x,3,7,0 (.x12x34.)
0,x,7,3,x,3,3,0 (.x41x23.)
0,x,3,3,3,x,7,0 (.x123x4.)
3,x,3,3,0,x,7,0 (1x23.x4.)
0,8,10,x,8,x,7,0 (.24x3x1.)
x,8,0,x,8,0,x,10 (x1.x2.x3)
0,8,0,10,x,8,7,x (.2.4x31x)
8,8,x,10,x,0,7,0 (23x4x.1.)
0,8,x,10,8,x,7,0 (.2x43x1.)
8,8,0,10,0,x,7,x (23.4.x1x)
0,8,10,x,x,8,7,0 (.24xx31.)
0,8,x,10,x,8,7,0 (.2x4x31.)
0,8,7,x,x,8,10,0 (.21xx34.)
x,8,x,x,0,8,0,10 (x1xx.2.3)
x,8,0,x,0,8,x,10 (x1.x.2x3)
8,8,7,x,0,x,10,0 (231x.x4.)
0,8,0,10,8,x,7,x (.2.43x1x)
8,8,10,x,0,x,7,0 (234x.x1.)
0,8,7,x,8,x,10,0 (.21x3x4.)
8,8,0,10,x,0,7,x (23.4x.1x)
x,8,x,x,8,0,0,10 (x1xx2..3)
8,8,7,x,x,0,10,0 (231xx.4.)
8,8,x,10,0,x,7,0 (23x4.x1.)
8,8,10,x,x,0,7,0 (234xx.1.)
0,8,0,10,8,x,x,10 (.1.32xx4)
8,8,0,10,x,0,x,10 (12.3x.x4)
0,8,0,10,x,8,x,10 (.1.3x2x4)
0,8,x,10,x,8,0,10 (.1x3x2.4)
8,8,x,10,x,0,0,10 (12x3x..4)
8,8,0,10,0,x,x,10 (12.3.xx4)
0,8,x,10,8,x,0,10 (.1x32x.4)
8,8,x,10,0,x,0,10 (12x3.x.4)
3,x,0,3,0,x,7,3 (1x.2.x43)
0,x,0,3,3,x,3,7 (.x.12x34)
0,x,7,3,3,x,0,3 (.x412x.3)
3,x,3,3,x,0,0,7 (1x23x..4)
3,x,0,3,0,x,3,7 (1x.2.x34)
0,x,3,3,x,3,0,7 (.x12x3.4)
0,x,0,3,x,3,3,7 (.x.1x234)
0,x,7,3,x,3,0,3 (.x41x2.3)
3,x,7,3,0,x,0,3 (1x42.x.3)
0,x,0,3,3,x,7,3 (.x.12x43)
3,x,0,3,x,0,7,3 (1x.2x.43)
0,x,3,3,3,x,0,7 (.x123x.4)
0,x,0,3,x,3,7,3 (.x.1x243)
3,x,0,3,x,0,3,7 (1x.2x.34)
3,x,3,3,0,x,0,7 (1x23.x.4)
3,x,7,3,x,0,0,3 (1x42x..3)
8,8,7,x,x,0,0,10 (231xx..4)
8,8,10,x,x,0,0,7 (234xx..1)
0,8,x,10,x,8,0,7 (.2x4x3.1)
0,8,7,x,8,x,0,10 (.21x3x.4)
0,8,0,x,8,x,7,10 (.2.x3x14)
0,8,10,x,x,8,0,7 (.24xx3.1)
0,8,x,10,8,x,0,7 (.2x43x.1)
8,8,0,x,0,x,7,10 (23.x.x14)
0,8,10,x,8,x,0,7 (.24x3x.1)
0,8,0,x,x,8,10,7 (.2.xx341)
0,8,0,x,x,8,7,10 (.2.xx314)
8,8,7,x,0,x,0,10 (231x.x.4)
0,8,0,x,8,x,10,7 (.2.x3x41)
8,8,x,10,x,0,0,7 (23x4x..1)
8,8,0,x,x,0,7,10 (23.xx.14)
8,8,x,10,0,x,0,7 (23x4.x.1)
8,8,0,x,x,0,10,7 (23.xx.41)
8,8,0,10,0,x,x,7 (23.4.xx1)
8,8,10,x,0,x,0,7 (234x.x.1)
8,8,0,x,0,x,10,7 (23.x.x41)
0,8,0,10,x,8,x,7 (.2.4x3x1)
0,8,0,10,8,x,x,7 (.2.43xx1)
0,8,7,x,x,8,0,10 (.21xx3.4)
8,8,0,10,x,0,x,7 (23.4x.x1)
3,x,3,3,x,0,0,x (1x23x..x)
3,x,3,3,0,x,0,x (1x23.x.x)
3,x,3,3,0,x,x,0 (1x23.xx.)
3,x,3,3,x,0,x,0 (1x23x.x.)
0,x,3,3,3,x,0,x (.x123x.x)
0,x,3,3,3,x,x,0 (.x123xx.)
0,x,3,3,x,3,0,x (.x12x3.x)
0,x,3,3,x,3,x,0 (.x12x3x.)
8,8,10,x,0,x,0,x (123x.x.x)
8,8,10,x,0,x,x,0 (123x.xx.)
8,8,10,x,x,0,x,0 (123xx.x.)
8,8,10,x,x,0,0,x (123xx..x)
0,x,x,3,x,3,3,0 (.xx1x23.)
3,x,x,3,0,x,3,0 (1xx2.x3.)
0,x,0,3,x,3,3,x (.x.1x23x)
3,x,0,3,x,0,3,x (1x.2x.3x)
0,x,x,3,3,x,3,0 (.xx12x3.)
3,x,0,3,0,x,3,x (1x.2.x3x)
0,x,0,3,3,x,3,x (.x.12x3x)
3,x,x,3,x,0,3,0 (1xx2x.3.)
3,x,7,3,0,x,0,x (1x32.x.x)
3,x,7,3,x,0,x,0 (1x32x.x.)
3,x,0,3,0,x,x,3 (1x.2.xx3)
0,x,x,3,x,3,0,3 (.xx1x2.3)
3,x,7,3,0,x,x,0 (1x32.xx.)
3,x,x,3,x,0,0,3 (1xx2x..3)
0,x,x,3,3,x,0,3 (.xx12x.3)
3,x,x,3,0,x,0,3 (1xx2.x.3)
3,x,7,3,x,0,0,x (1x32x..x)
3,x,0,3,x,0,x,3 (1x.2x.x3)
0,x,0,3,x,3,x,3 (.x.1x2x3)
0,x,0,3,3,x,x,3 (.x.12xx3)
0,8,10,x,8,x,x,0 (.13x2xx.)
0,8,10,x,8,x,0,x (.13x2x.x)
0,x,7,3,3,x,x,0 (.x312xx.)
0,x,7,3,3,x,0,x (.x312x.x)
0,8,10,x,x,8,0,x (.13xx2.x)
0,8,10,x,x,8,x,0 (.13xx2x.)
3,x,3,3,x,5,7,x (1x11x23x)
5,x,3,3,x,3,7,x (2x11x13x)
3,x,3,3,5,x,7,x (1x112x3x)
5,x,3,3,3,x,7,x (2x111x3x)
5,x,7,3,x,3,3,x (2x31x11x)
3,x,7,3,5,x,3,x (1x312x1x)
5,x,7,3,3,x,3,x (2x311x1x)
0,x,7,3,x,3,0,x (.x31x2.x)
0,x,7,3,x,3,x,0 (.x31x2x.)
3,x,7,3,x,5,3,x (1x31x21x)
0,8,x,x,x,8,10,0 (.1xxx23.)
0,8,x,x,8,x,10,0 (.1xx2x3.)
8,8,x,x,0,x,10,0 (12xx.x3.)
8,8,0,x,0,x,10,x (12.x.x3x)
0,8,0,x,8,x,10,x (.1.x2x3x)
8,8,0,x,x,0,10,x (12.xx.3x)
0,8,0,x,x,8,10,x (.1.xx23x)
8,8,x,x,x,0,10,0 (12xxx.3.)
5,x,7,3,x,3,x,3 (2x31x1x1)
5,x,3,3,x,3,x,7 (2x11x1x3)
3,x,x,3,0,x,7,0 (1xx2.x3.)
5,x,x,3,x,3,3,7 (2xx1x113)
3,x,3,3,x,5,x,7 (1x11x2x3)
0,x,x,3,3,x,7,0 (.xx12x3.)
3,x,3,3,5,x,x,7 (1x112xx3)
3,x,x,3,x,0,7,0 (1xx2x.3.)
5,x,3,3,3,x,x,7 (2x111xx3)
3,x,x,3,5,x,3,7 (1xx12x13)
0,x,x,3,x,3,7,0 (.xx1x23.)
5,x,x,3,3,x,3,7 (2xx11x13)
3,x,x,3,x,5,7,3 (1xx1x231)
5,x,7,3,3,x,x,3 (2x311xx1)
3,x,7,3,5,x,x,3 (1x312xx1)
0,x,0,3,x,3,7,x (.x.1x23x)
5,x,x,3,x,3,7,3 (2xx1x131)
3,x,0,3,x,0,7,x (1x.2x.3x)
3,x,x,3,5,x,7,3 (1xx12x31)
5,x,x,3,3,x,7,3 (2xx11x31)
3,x,x,3,x,5,3,7 (1xx1x213)
0,x,0,3,3,x,7,x (.x.12x3x)
3,x,7,3,x,5,x,3 (1x31x2x1)
3,x,0,3,0,x,7,x (1x.2.x3x)
8,8,x,x,x,0,0,10 (12xxx..3)
0,8,x,x,8,x,0,10 (.1xx2x.3)
0,8,x,x,x,8,0,10 (.1xxx2.3)
8,8,x,x,0,x,0,10 (12xx.x.3)
0,8,0,x,x,8,x,10 (.1.xx2x3)
8,8,0,x,x,0,x,10 (12.xx.x3)
0,8,0,x,8,x,x,10 (.1.x2xx3)
8,8,0,x,0,x,x,10 (12.x.xx3)
3,x,x,3,x,0,0,7 (1xx2x..3)
3,x,x,3,0,x,0,7 (1xx2.x.3)
0,x,0,3,3,x,x,7 (.x.12xx3)
0,x,x,3,x,3,0,7 (.xx1x2.3)
0,x,x,3,3,x,0,7 (.xx12x.3)
3,x,0,3,x,0,x,7 (1x.2x.x3)
0,x,0,3,x,3,x,7 (.x.1x2x3)
3,x,0,3,0,x,x,7 (1x.2.xx3)