Mandolin Chord Chart and Tabs in Modal D Tuning

Си#M7sus24, Си#Ma7sus24, Си#j7sus24, Си#Δ7sus24, Си#Δsus24, Си# maj7sus24, Си# major7sus24
Notes: Си♯, Доx, Ми♯, Фаx, Ляx
x,x,9,10,8,10,0,0 (xx2314..)
x,x,9,10,10,8,0,0 (xx2341..)
x,x,0,10,10,8,9,0 (xx.3412.)
x,x,0,10,8,10,9,0 (xx.3142.)
x,x,0,10,10,8,0,9 (xx.341.2)
x,x,0,10,8,10,0,9 (xx.314.2)
x,x,x,10,8,10,9,0 (xxx3142.)
x,x,x,10,10,8,9,0 (xxx3412.)
x,x,x,10,10,8,0,9 (xxx341.2)
x,x,x,10,8,10,0,9 (xxx314.2)
x,3,3,5,2,x,0,0 (x2341x..)
x,3,5,3,2,x,0,0 (x2431x..)
x,3,5,3,x,2,0,0 (x243x1..)
x,3,3,5,x,2,0,0 (x234x1..)
x,3,0,5,x,2,3,0 (x2.4x13.)
x,3,0,3,2,x,5,0 (x2.31x4.)
x,3,3,0,2,x,5,0 (x23.1x4.)
x,3,0,3,x,2,5,0 (x2.3x14.)
x,3,5,0,x,2,3,0 (x24.x13.)
x,3,5,0,2,x,3,0 (x24.1x3.)
x,3,3,0,x,2,5,0 (x23.x14.)
x,3,0,5,2,x,3,0 (x2.41x3.)
x,3,0,0,x,2,3,5 (x2..x134)
x,3,3,0,x,2,0,5 (x23.x1.4)
x,3,0,5,x,2,0,3 (x2.4x1.3)
x,3,5,0,2,x,0,3 (x24.1x.3)
x,3,3,0,2,x,0,5 (x23.1x.4)
x,3,0,3,2,x,0,5 (x2.31x.4)
x,3,0,0,2,x,3,5 (x2..1x34)
x,3,0,3,x,2,0,5 (x2.3x1.4)
x,3,0,5,2,x,0,3 (x2.41x.3)
x,3,5,0,x,2,0,3 (x24.x1.3)
x,3,0,0,x,2,5,3 (x2..x143)
x,3,0,0,2,x,5,3 (x2..1x43)
x,x,9,10,8,10,0,x (xx2314.x)
x,x,9,10,10,8,x,0 (xx2341x.)
x,x,9,10,10,8,0,x (xx2341.x)
x,x,9,10,8,10,x,0 (xx2314x.)
x,x,0,10,10,8,9,x (xx.3412x)
x,x,0,10,8,10,9,x (xx.3142x)
x,x,0,10,10,8,x,9 (xx.341x2)
x,x,0,10,8,10,x,9 (xx.314x2)
2,3,3,5,x,x,0,0 (1234xx..)
2,3,5,3,x,x,0,0 (1243xx..)
2,3,0,5,x,x,3,0 (12.4xx3.)
2,3,3,0,x,x,5,0 (123.xx4.)
2,3,0,3,x,x,5,0 (12.3xx4.)
2,3,5,0,x,x,3,0 (124.xx3.)
x,3,5,3,2,x,0,x (x2431x.x)
x,3,3,5,2,x,x,0 (x2341xx.)
x,3,3,5,2,x,0,x (x2341x.x)
x,3,5,3,2,x,x,0 (x2431xx.)
8,x,9,10,10,x,0,0 (1x234x..)
2,3,0,0,x,x,3,5 (12..xx34)
2,3,3,0,x,x,0,5 (123.xx.4)
2,3,5,0,x,x,0,3 (124.xx.3)
2,3,0,3,x,x,0,5 (12.3xx.4)
2,3,0,5,x,x,0,3 (12.4xx.3)
2,3,0,0,x,x,5,3 (12..xx43)
10,x,9,10,8,x,0,0 (3x241x..)
x,3,5,3,x,2,x,0 (x243x1x.)
x,3,3,5,x,2,0,x (x234x1.x)
x,3,5,3,x,2,0,x (x243x1.x)
x,3,3,5,x,2,x,0 (x234x1x.)
8,x,9,10,x,10,0,0 (1x23x4..)
10,x,9,10,x,8,0,0 (3x24x1..)
x,3,3,x,x,2,5,0 (x23xx14.)
x,3,5,x,x,2,3,0 (x24xx13.)
x,3,x,5,2,x,3,0 (x2x41x3.)
x,3,3,x,2,x,5,0 (x23x1x4.)
x,3,3,0,2,x,5,x (x23.1x4x)
x,3,x,3,2,x,5,0 (x2x31x4.)
x,3,5,x,2,x,3,0 (x24x1x3.)
x,3,0,3,2,x,5,x (x2.31x4x)
x,3,0,5,x,2,3,x (x2.4x13x)
x,3,x,3,x,2,5,0 (x2x3x14.)
x,3,5,0,x,2,3,x (x24.x13x)
x,3,3,0,x,2,5,x (x23.x14x)
x,3,0,3,x,2,5,x (x2.3x14x)
x,3,0,5,2,x,3,x (x2.41x3x)
x,3,5,0,2,x,3,x (x24.1x3x)
x,3,x,5,x,2,3,0 (x2x4x13.)
8,x,0,10,x,10,9,0 (1x.3x42.)
10,x,0,10,x,8,9,0 (3x.4x12.)
8,x,0,10,10,x,9,0 (1x.34x2.)
10,x,0,10,8,x,9,0 (3x.41x2.)
x,3,x,5,2,x,0,3 (x2x41x.3)
x,3,3,0,2,x,x,5 (x23.1xx4)
x,3,0,3,2,x,x,5 (x2.31xx4)
x,3,x,0,x,2,5,3 (x2x.x143)
x,3,5,0,2,x,x,3 (x24.1xx3)
x,3,0,5,2,x,x,3 (x2.41xx3)
x,3,5,0,x,2,x,3 (x24.x1x3)
x,3,0,5,x,2,x,3 (x2.4x1x3)
x,3,0,x,x,2,5,3 (x2.xx143)
x,3,x,0,x,2,3,5 (x2x.x134)
x,3,0,x,x,2,3,5 (x2.xx134)
x,3,x,0,2,x,3,5 (x2x.1x34)
x,3,5,x,2,x,0,3 (x24x1x.3)
x,3,0,x,2,x,3,5 (x2.x1x34)
x,3,3,0,x,2,x,5 (x23.x1x4)
x,3,x,3,x,2,0,5 (x2x3x1.4)
x,3,5,x,x,2,0,3 (x24xx1.3)
x,3,3,x,x,2,0,5 (x23xx1.4)
x,3,x,5,x,2,0,3 (x2x4x1.3)
x,3,x,3,2,x,0,5 (x2x31x.4)
x,3,3,x,2,x,0,5 (x23x1x.4)
x,3,0,3,x,2,x,5 (x2.3x1x4)
x,3,0,x,2,x,5,3 (x2.x1x43)
x,3,x,0,2,x,5,3 (x2x.1x43)
8,x,0,10,x,10,0,9 (1x.3x4.2)
10,x,0,10,8,x,0,9 (3x.41x.2)
8,x,0,10,10,x,0,9 (1x.34x.2)
10,x,0,10,x,8,0,9 (3x.4x1.2)
2,3,3,5,x,x,x,0 (1234xxx.)
2,3,5,3,x,x,x,0 (1243xxx.)
2,3,5,3,x,x,0,x (1243xx.x)
2,3,3,5,x,x,0,x (1234xx.x)
2,3,3,0,x,x,5,x (123.xx4x)
2,3,5,x,x,x,3,0 (124xxx3.)
2,3,5,0,x,x,3,x (124.xx3x)
2,3,x,5,x,x,3,0 (12x4xx3.)
2,3,0,5,x,x,3,x (12.4xx3x)
2,3,0,3,x,x,5,x (12.3xx4x)
2,3,3,x,x,x,5,0 (123xxx4.)
2,3,x,3,x,x,5,0 (12x3xx4.)
2,3,x,0,x,x,5,3 (12x.xx43)
2,3,0,x,x,x,5,3 (12.xxx43)
2,3,5,0,x,x,x,3 (124.xxx3)
2,3,0,5,x,x,x,3 (12.4xxx3)
2,3,5,x,x,x,0,3 (124xxx.3)
2,3,0,3,x,x,x,5 (12.3xxx4)
10,x,9,10,8,x,x,0 (3x241xx.)
8,x,9,10,10,x,x,0 (1x234xx.)
10,x,9,10,8,x,0,x (3x241x.x)
2,3,0,x,x,x,3,5 (12.xxx34)
2,3,x,0,x,x,3,5 (12x.xx34)
2,3,3,x,x,x,0,5 (123xxx.4)
8,x,9,10,10,x,0,x (1x234x.x)
2,3,x,3,x,x,0,5 (12x3xx.4)
2,3,3,0,x,x,x,5 (123.xxx4)
2,3,x,5,x,x,0,3 (12x4xx.3)
10,x,9,10,x,8,x,0 (3x24x1x.)
10,x,9,10,x,8,0,x (3x24x1.x)
8,x,9,10,x,10,0,x (1x23x4.x)
8,x,9,10,x,10,x,0 (1x23x4x.)
10,x,x,10,8,x,9,0 (3xx41x2.)
8,x,0,10,10,x,9,x (1x.34x2x)
8,x,x,10,x,10,9,0 (1xx3x42.)
8,x,x,10,10,x,9,0 (1xx34x2.)
8,x,0,10,x,10,9,x (1x.3x42x)
10,x,0,10,x,8,9,x (3x.4x12x)
10,x,0,10,8,x,9,x (3x.41x2x)
10,x,x,10,x,8,9,0 (3xx4x12.)
10,x,x,10,x,8,0,9 (3xx4x1.2)
10,x,x,10,8,x,0,9 (3xx41x.2)
8,x,0,10,x,10,x,9 (1x.3x4x2)
10,x,0,10,x,8,x,9 (3x.4x1x2)
8,x,x,10,x,10,0,9 (1xx3x4.2)
8,x,0,10,10,x,x,9 (1x.34xx2)
10,x,0,10,8,x,x,9 (3x.41xx2)
8,x,x,10,10,x,0,9 (1xx34x.2)