Mandolin Chord Chart and Tabs in Modal D Tuning

Доbm7b9, Доb-7b9
Notes: До♭, Ми♭♭, Соль♭, Си♭♭, Ре♭♭
x,2,4,0,3,0,0,x (x13.2..x)
x,2,4,0,3,0,x,0 (x13.2.x.)
3,2,4,0,2,0,x,0 (314.2.x.)
2,2,4,0,3,0,x,0 (124.3.x.)
3,2,4,0,2,0,0,x (314.2..x)
2,2,4,0,3,0,0,x (124.3..x)
x,2,4,4,3,0,x,0 (x1342.x.)
x,2,4,0,0,3,0,x (x13..2.x)
x,2,4,4,3,0,0,x (x1342..x)
x,2,4,0,0,3,x,0 (x13..2x.)
0,2,4,0,3,2,0,x (.14.32.x)
0,2,4,0,2,3,x,0 (.14.23x.)
3,2,4,0,0,2,x,0 (314..2x.)
2,2,4,0,0,3,0,x (124..3.x)
0,2,4,0,2,3,0,x (.14.23.x)
0,2,4,0,3,2,x,0 (.14.32x.)
2,2,4,0,0,3,x,0 (124..3x.)
3,2,4,0,0,2,0,x (314..2.x)
x,2,4,4,0,3,x,0 (x134.2x.)
x,2,x,0,0,3,4,0 (x1x..23.)
x,2,x,0,3,0,4,0 (x1x.2.3.)
x,2,0,0,0,3,4,x (x1...23x)
x,2,4,4,0,3,0,x (x134.2.x)
x,2,0,0,3,0,4,x (x1..2.3x)
2,2,0,0,3,0,4,x (12..3.4x)
3,2,0,0,2,0,4,x (31..2.4x)
3,2,0,0,0,2,4,x (31...24x)
0,2,0,0,3,2,4,x (.1..324x)
2,2,x,0,0,3,4,0 (12x..34.)
2,2,0,0,0,3,4,x (12...34x)
2,2,x,0,3,0,4,0 (12x.3.4.)
0,2,x,0,2,3,4,0 (.1x.234.)
0,2,0,0,2,3,4,x (.1..234x)
0,2,x,0,3,2,4,0 (.1x.324.)
3,2,x,0,0,2,4,0 (31x..24.)
3,2,x,0,2,0,4,0 (31x.2.4.)
x,2,0,0,0,3,x,4 (x1...2x3)
x,2,x,0,0,3,0,4 (x1x..2.3)
x,2,x,0,3,0,0,4 (x1x.2..3)
x,2,x,4,0,3,4,0 (x1x3.24.)
x,2,0,0,3,0,x,4 (x1..2.x3)
x,2,0,4,3,0,4,x (x1.32.4x)
x,2,x,4,3,0,4,0 (x1x32.4.)
x,2,0,4,0,3,4,x (x1.3.24x)
3,2,x,0,0,2,0,4 (31x..2.4)
2,2,0,0,0,3,x,4 (12...3x4)
0,2,x,0,3,2,0,4 (.1x.32.4)
2,2,x,0,0,3,0,4 (12x..3.4)
2,2,0,0,3,0,x,4 (12..3.x4)
0,2,0,0,2,3,x,4 (.1..23x4)
0,2,0,0,3,2,x,4 (.1..32x4)
3,2,0,0,2,0,x,4 (31..2.x4)
3,2,x,0,2,0,0,4 (31x.2..4)
3,2,0,0,0,2,x,4 (31...2x4)
0,2,x,0,2,3,0,4 (.1x.23.4)
2,2,x,0,3,0,0,4 (12x.3..4)
x,2,0,4,3,0,x,4 (x1.32.x4)
x,2,x,4,0,3,0,4 (x1x3.2.4)
x,2,0,4,0,3,x,4 (x1.3.2x4)
x,2,x,4,3,0,0,4 (x1x32..4)
3,2,4,0,x,0,0,x (213.x..x)
3,2,4,0,0,x,x,0 (213..xx.)
3,2,4,0,x,0,x,0 (213.x.x.)
3,2,4,0,0,x,0,x (213..x.x)
3,2,4,4,0,x,0,x (2134.x.x)
0,2,4,0,3,x,0,x (.13.2x.x)
3,2,4,4,0,x,x,0 (2134.xx.)
0,2,4,0,3,x,x,0 (.13.2xx.)
3,2,4,4,x,0,x,0 (2134x.x.)
3,2,4,4,x,0,0,x (2134x..x)
x,2,4,x,3,0,0,x (x13x2..x)
x,2,4,x,3,0,x,0 (x13x2.x.)
0,2,4,0,x,3,0,x (.13.x2.x)
2,2,4,x,3,0,x,0 (124x3.x.)
2,2,4,x,3,0,0,x (124x3..x)
0,2,4,4,3,x,0,x (.1342x.x)
3,2,4,x,2,0,0,x (314x2..x)
0,2,4,0,x,3,x,0 (.13.x2x.)
0,2,4,4,3,x,x,0 (.1342xx.)
3,2,4,x,2,0,x,0 (314x2.x.)
x,2,4,x,0,3,0,x (x13x.2.x)
x,2,4,x,0,3,x,0 (x13x.2x.)
0,2,0,0,x,3,4,x (.1..x23x)
0,2,4,x,3,2,0,x (.14x32.x)
0,2,4,x,2,3,x,0 (.14x23x.)
0,2,0,0,3,x,4,x (.1..2x3x)
3,2,4,x,0,2,x,0 (314x.2x.)
3,2,x,0,0,x,4,0 (21x..x3.)
0,2,4,4,x,3,0,x (.134x2.x)
0,2,4,x,3,2,x,0 (.14x32x.)
0,2,x,0,3,x,4,0 (.1x.2x3.)
0,2,x,0,x,3,4,0 (.1x.x23.)
0,2,4,x,2,3,0,x (.14x23.x)
3,2,x,0,x,0,4,0 (21x.x.3.)
3,2,0,0,x,0,4,x (21..x.3x)
3,2,4,x,0,2,0,x (314x.2.x)
2,2,4,x,0,3,0,x (124x.3.x)
3,2,0,0,0,x,4,x (21...x3x)
2,2,4,x,0,3,x,0 (124x.3x.)
0,2,4,4,x,3,x,0 (.134x2x.)
x,2,x,x,0,3,4,0 (x1xx.23.)
x,2,0,x,0,3,4,x (x1.x.23x)
x,2,x,x,3,0,4,0 (x1xx2.3.)
x,2,0,x,3,0,4,x (x1.x2.3x)
0,2,0,4,x,3,4,x (.1.3x24x)
0,2,x,4,3,x,4,0 (.1x32x4.)
0,2,x,4,x,3,4,0 (.1x3x24.)
2,2,x,x,3,0,4,0 (12xx3.4.)
2,2,x,x,0,3,4,0 (12xx.34.)
3,2,x,4,0,x,4,0 (21x3.x4.)
0,2,x,0,x,3,0,4 (.1x.x2.3)
0,2,x,x,2,3,4,0 (.1xx234.)
0,2,0,x,2,3,4,x (.1.x234x)
3,2,0,0,0,x,x,4 (21...xx3)
2,2,0,x,0,3,4,x (12.x.34x)
0,2,0,0,3,x,x,4 (.1..2xx3)
3,2,x,x,2,0,4,0 (31xx2.4.)
3,2,0,0,x,0,x,4 (21..x.x3)
3,2,x,x,0,2,4,0 (31xx.24.)
0,2,x,0,3,x,0,4 (.1x.2x.3)
0,2,x,x,3,2,4,0 (.1xx324.)
3,2,x,0,0,x,0,4 (21x..x.3)
0,2,0,x,3,2,4,x (.1.x324x)
3,2,0,x,0,2,4,x (31.x.24x)
2,2,0,x,3,0,4,x (12.x3.4x)
3,2,x,4,x,0,4,0 (21x3x.4.)
3,2,0,x,2,0,4,x (31.x2.4x)
0,2,0,0,x,3,x,4 (.1..x2x3)
3,2,0,4,0,x,4,x (21.3.x4x)
3,2,0,4,x,0,4,x (21.3x.4x)
0,2,0,4,3,x,4,x (.1.32x4x)
3,2,x,0,x,0,0,4 (21x.x..3)
x,2,0,x,0,3,x,4 (x1.x.2x3)
x,2,x,x,0,3,0,4 (x1xx.2.3)
x,2,x,x,3,0,0,4 (x1xx2..3)
x,2,0,x,3,0,x,4 (x1.x2.x3)
3,2,0,4,0,x,x,4 (21.3.xx4)
3,2,x,x,2,0,0,4 (31xx2..4)
0,2,0,4,x,3,x,4 (.1.3x2x4)
0,2,x,x,3,2,0,4 (.1xx32.4)
2,2,0,x,0,3,x,4 (12.x.3x4)
0,2,0,4,3,x,x,4 (.1.32xx4)
2,2,x,x,0,3,0,4 (12xx.3.4)
3,2,x,x,0,2,0,4 (31xx.2.4)
0,2,0,x,2,3,x,4 (.1.x23x4)
0,2,x,4,x,3,0,4 (.1x3x2.4)
2,2,x,x,3,0,0,4 (12xx3..4)
3,2,0,x,0,2,x,4 (31.x.2x4)
3,2,x,4,0,x,0,4 (21x3.x.4)
3,2,0,4,x,0,x,4 (21.3x.x4)
0,2,0,x,3,2,x,4 (.1.x32x4)
0,2,x,4,3,x,0,4 (.1x32x.4)
0,2,x,x,2,3,0,4 (.1xx23.4)
3,2,0,x,2,0,x,4 (31.x2.x4)
3,2,x,4,x,0,0,4 (21x3x..4)
2,2,0,x,3,0,x,4 (12.x3.x4)
3,2,4,x,x,0,0,x (213xx..x)
3,2,4,x,0,x,0,x (213x.x.x)
3,2,4,x,x,0,x,0 (213xx.x.)
3,2,4,x,0,x,x,0 (213x.xx.)
0,2,4,x,3,x,0,x (.13x2x.x)
0,2,4,x,3,x,x,0 (.13x2xx.)
0,2,4,x,x,3,x,0 (.13xx2x.)
0,2,4,x,x,3,0,x (.13xx2.x)
3,2,x,x,0,x,4,0 (21xx.x3.)
3,2,x,x,x,0,4,0 (21xxx.3.)
0,2,x,x,x,3,4,0 (.1xxx23.)
3,2,0,x,x,0,4,x (21.xx.3x)
0,2,0,x,3,x,4,x (.1.x2x3x)
3,2,0,x,0,x,4,x (21.x.x3x)
0,2,x,x,3,x,4,0 (.1xx2x3.)
0,2,0,x,x,3,4,x (.1.xx23x)
0,2,0,x,3,x,x,4 (.1.x2xx3)
3,2,0,x,0,x,x,4 (21.x.xx3)
3,2,x,x,x,0,0,4 (21xxx..3)
3,2,x,x,0,x,0,4 (21xx.x.3)
0,2,0,x,x,3,x,4 (.1.xx2x3)
0,2,x,x,3,x,0,4 (.1xx2x.3)
3,2,0,x,x,0,x,4 (21.xx.x3)
0,2,x,x,x,3,0,4 (.1xxx2.3)