Mandolin Chord Chart and Tabs in Modal D Tuning

파b7sus24
Notes: 파♭, 솔♭, 시♭♭, 도♭, 미♭♭
x,x,x,2,2,0,4,0 (xxx12.3.)
x,x,x,2,0,2,4,0 (xxx1.23.)
x,x,4,2,2,0,2,0 (xx412.3.)
x,x,4,2,0,2,2,0 (xx41.23.)
x,x,2,2,2,0,4,0 (xx123.4.)
x,x,2,2,0,2,4,0 (xx12.34.)
x,x,x,2,2,0,0,4 (xxx12..3)
x,x,x,2,0,2,0,4 (xxx1.2.3)
x,x,0,2,0,2,4,2 (xx.1.243)
x,x,0,2,2,0,4,2 (xx.12.43)
x,x,0,2,0,2,2,4 (xx.1.234)
x,x,0,2,2,0,2,4 (xx.12.34)
x,x,2,2,2,0,0,4 (xx123..4)
x,x,2,2,0,2,0,4 (xx12.3.4)
x,x,4,2,2,0,0,2 (xx412..3)
x,x,4,2,0,2,0,2 (xx41.2.3)
x,x,4,2,2,0,0,x (xx312..x)
x,x,4,2,2,0,x,0 (xx312.x.)
x,x,4,2,0,2,0,x (xx31.2.x)
x,x,4,2,0,2,x,0 (xx31.2x.)
x,7,7,9,9,0,x,0 (x1234.x.)
x,7,9,9,9,0,x,0 (x1234.x.)
x,7,9,9,9,0,0,x (x1234..x)
x,7,7,9,9,0,0,x (x1234..x)
x,x,0,2,2,0,4,x (xx.12.3x)
x,x,0,2,0,2,4,x (xx.1.23x)
x,x,0,2,0,2,x,4 (xx.1.2x3)
x,7,9,9,0,9,x,0 (x123.4x.)
x,7,7,9,0,9,x,0 (x123.4x.)
x,x,0,2,2,0,x,4 (xx.12.x3)
x,7,7,9,0,9,0,x (x123.4.x)
x,7,9,9,0,9,0,x (x123.4.x)
x,7,x,9,9,0,9,0 (x1x23.4.)
x,7,0,9,9,0,7,x (x1.34.2x)
x,7,0,9,9,0,9,x (x1.23.4x)
x,7,0,9,0,9,9,x (x1.2.34x)
x,7,x,9,0,9,9,0 (x1x2.34.)
x,7,7,x,0,9,9,0 (x12x.34.)
x,7,0,9,0,9,7,x (x1.3.42x)
x,7,7,x,9,0,9,0 (x12x3.4.)
x,7,x,9,0,9,7,0 (x1x3.42.)
x,7,9,x,0,9,7,0 (x13x.42.)
x,7,x,9,9,0,7,0 (x1x34.2.)
x,7,9,x,9,0,7,0 (x13x4.2.)
x,7,x,9,0,9,0,7 (x1x3.4.2)
x,7,0,9,0,9,x,7 (x1.3.4x2)
x,7,x,9,9,0,0,7 (x1x34..2)
x,7,0,9,9,0,x,7 (x1.34.x2)
x,7,0,9,0,9,x,9 (x1.2.3x4)
x,7,7,x,0,9,0,9 (x12x.3.4)
x,7,x,9,0,9,0,9 (x1x2.3.4)
x,7,0,9,9,0,x,9 (x1.23.x4)
x,7,9,x,9,0,0,7 (x13x4..2)
x,7,9,x,0,9,0,7 (x13x.4.2)
x,7,0,x,9,0,7,9 (x1.x3.24)
x,7,0,x,9,0,9,7 (x1.x3.42)
x,7,0,x,0,9,9,7 (x1.x.342)
x,7,7,x,9,0,0,9 (x12x3..4)
x,7,x,9,9,0,0,9 (x1x23..4)
x,7,0,x,0,9,7,9 (x1.x.324)
9,7,7,9,0,x,0,x (3124.x.x)
9,7,7,9,0,x,x,0 (3124.xx.)
9,7,9,9,0,x,x,0 (2134.xx.)
9,7,7,9,x,0,0,x (3124x..x)
9,7,9,9,x,0,0,x (2134x..x)
9,7,7,9,x,0,x,0 (3124x.x.)
9,7,9,9,x,0,x,0 (2134x.x.)
9,7,9,9,0,x,0,x (2134.x.x)
x,7,9,x,9,0,x,0 (x12x3.x.)
x,7,9,x,9,0,0,x (x12x3..x)
0,7,7,9,9,x,x,0 (.1234xx.)
9,7,9,x,7,0,x,0 (314x2.x.)
9,7,9,x,7,0,0,x (314x2..x)
7,7,9,x,9,0,x,0 (123x4.x.)
0,7,7,9,9,x,0,x (.1234x.x)
0,7,9,9,9,x,x,0 (.1234xx.)
0,7,9,9,9,x,0,x (.1234x.x)
7,7,9,x,9,0,0,x (123x4..x)
2,x,4,2,0,x,2,0 (1x42.x3.)
2,x,2,2,x,0,4,0 (1x23x.4.)
0,x,2,2,2,x,4,0 (.x123x4.)
0,x,2,2,x,2,4,0 (.x12x34.)
2,x,2,2,0,x,4,0 (1x23.x4.)
0,x,4,2,x,2,2,0 (.x41x23.)
2,x,4,2,x,0,2,0 (1x42x.3.)
0,x,4,2,2,x,2,0 (.x412x3.)
x,7,9,x,0,9,x,0 (x12x.3x.)
x,7,9,x,0,9,0,x (x12x.3.x)
0,7,9,x,7,9,x,0 (.13x24x.)
7,7,9,x,0,9,x,0 (123x.4x.)
0,7,9,x,9,7,0,x (.13x42.x)
7,7,9,x,0,9,0,x (123x.4.x)
0,7,9,9,x,9,x,0 (.123x4x.)
9,7,9,x,0,7,x,0 (314x.2x.)
0,7,9,9,x,9,0,x (.123x4.x)
0,7,9,x,7,9,0,x (.13x24.x)
0,7,9,x,9,7,x,0 (.13x42x.)
9,7,9,x,0,7,0,x (314x.2.x)
0,7,7,9,x,9,0,x (.123x4.x)
0,7,7,9,x,9,x,0 (.123x4x.)
0,x,2,2,x,2,0,4 (.x12x3.4)
2,x,2,2,0,x,0,4 (1x23.x.4)
2,x,0,2,x,0,2,4 (1x.2x.34)
2,x,2,2,x,0,0,4 (1x23x..4)
2,x,4,2,0,x,0,2 (1x42.x.3)
0,x,4,2,2,x,0,2 (.x412x.3)
2,x,4,2,x,0,0,2 (1x42x..3)
0,x,0,2,2,x,2,4 (.x.12x34)
0,x,4,2,x,2,0,2 (.x41x2.3)
0,x,2,2,2,x,0,4 (.x123x.4)
2,x,0,2,0,x,4,2 (1x.2.x43)
0,x,0,2,2,x,4,2 (.x.12x43)
2,x,0,2,x,0,4,2 (1x.2x.43)
2,x,0,2,0,x,2,4 (1x.2.x34)
0,x,0,2,x,2,4,2 (.x.1x243)
0,x,0,2,x,2,2,4 (.x.1x234)
x,7,x,x,0,9,9,0 (x1xx.23.)
x,7,0,x,0,9,9,x (x1.x.23x)
x,7,0,x,9,0,9,x (x1.x2.3x)
x,7,x,x,9,0,9,0 (x1xx2.3.)
0,7,7,x,9,x,9,0 (.12x3x4.)
0,7,x,9,9,x,9,0 (.1x23x4.)
0,7,0,x,9,7,9,x (.1.x324x)
9,7,7,x,x,0,9,0 (312xx.4.)
9,7,x,9,x,0,9,0 (21x3x.4.)
9,7,x,x,7,0,9,0 (31xx2.4.)
0,7,0,9,9,x,7,x (.1.34x2x)
7,7,x,x,9,0,9,0 (12xx3.4.)
0,7,0,9,x,9,9,x (.1.2x34x)
9,7,0,9,0,x,9,x (21.3.x4x)
9,7,x,x,0,7,9,0 (31xx.24.)
0,7,x,x,9,7,9,0 (.1xx324.)
7,7,0,x,0,9,9,x (12.x.34x)
0,7,7,x,x,9,9,0 (.12xx34.)
0,7,x,9,x,9,9,0 (.1x2x34.)
9,7,0,9,x,0,7,x (31.4x.2x)
7,7,x,x,0,9,9,0 (12xx.34.)
0,7,0,x,7,9,9,x (.1.x234x)
0,7,0,9,9,x,9,x (.1.23x4x)
0,7,x,x,7,9,9,0 (.1xx234.)
9,7,9,x,0,x,7,0 (314x.x2.)
9,7,x,9,0,x,7,0 (31x4.x2.)
0,7,9,x,9,x,7,0 (.13x4x2.)
0,7,x,9,9,x,7,0 (.1x34x2.)
9,7,9,x,x,0,7,0 (314xx.2.)
9,7,x,9,x,0,7,0 (31x4x.2.)
9,7,0,9,x,0,9,x (21.3x.4x)
9,7,0,x,7,0,9,x (31.x2.4x)
0,7,9,x,x,9,7,0 (.13xx42.)
0,7,x,9,x,9,7,0 (.1x3x42.)
0,7,0,9,x,9,7,x (.1.3x42x)
7,7,0,x,9,0,9,x (12.x3.4x)
9,7,0,9,0,x,7,x (31.4.x2x)
9,7,7,x,0,x,9,0 (312x.x4.)
9,7,x,9,0,x,9,0 (21x3.x4.)
9,7,0,x,0,7,9,x (31.x.24x)
x,7,0,x,9,0,x,9 (x1.x2.x3)
x,7,0,x,0,9,x,9 (x1.x.2x3)
x,7,x,x,9,0,0,9 (x1xx2..3)
x,7,x,x,0,9,0,9 (x1xx.2.3)
0,7,0,x,7,9,x,9 (.1.x23x4)
0,7,7,x,9,x,0,9 (.12x3x.4)
0,7,0,9,x,9,x,9 (.1.2x3x4)
9,7,0,x,7,0,x,9 (31.x2.x4)
0,7,x,9,9,x,0,9 (.1x23x.4)
9,7,7,x,x,0,0,9 (312xx..4)
0,7,0,x,9,7,x,9 (.1.x32x4)
9,7,x,9,x,0,0,9 (21x3x..4)
9,7,x,x,7,0,0,9 (31xx2..4)
7,7,0,x,0,9,x,9 (12.x.3x4)
7,7,x,x,9,0,0,9 (12xx3..4)
9,7,0,9,x,0,x,9 (21.3x.x4)
9,7,x,x,0,7,0,9 (31xx.2.4)
0,7,x,x,9,7,0,9 (.1xx32.4)
7,7,0,x,9,0,x,9 (12.x3.x4)
0,7,7,x,x,9,0,9 (.12xx3.4)
9,7,0,9,0,x,x,7 (31.4.xx2)
0,7,0,9,9,x,x,7 (.1.34xx2)
9,7,0,9,x,0,x,7 (31.4x.x2)
0,7,x,9,x,9,0,9 (.1x2x3.4)
0,7,0,9,x,9,x,7 (.1.3x4x2)
9,7,x,9,0,x,0,9 (21x3.x.4)
9,7,7,x,0,x,0,9 (312x.x.4)
9,7,x,9,0,x,0,7 (31x4.x.2)
0,7,9,x,9,x,0,7 (.13x4x.2)
0,7,x,9,9,x,0,7 (.1x34x.2)
9,7,9,x,x,0,0,7 (314xx..2)
9,7,x,9,x,0,0,7 (31x4x..2)
7,7,x,x,0,9,0,9 (12xx.3.4)
0,7,x,x,7,9,0,9 (.1xx23.4)
0,7,9,x,x,9,0,7 (.13xx4.2)
0,7,x,9,x,9,0,7 (.1x3x4.2)
9,7,0,x,0,x,7,9 (31.x.x24)
0,7,0,x,9,x,7,9 (.1.x3x24)
9,7,0,x,0,x,9,7 (31.x.x42)
0,7,0,x,9,x,9,7 (.1.x3x42)
9,7,0,x,x,0,9,7 (31.xx.42)
9,7,0,x,x,0,7,9 (31.xx.24)
0,7,0,x,x,9,9,7 (.1.xx342)
0,7,0,9,9,x,x,9 (.1.23xx4)
9,7,0,x,0,7,x,9 (31.x.2x4)
9,7,0,9,0,x,x,9 (21.3.xx4)
0,7,0,x,x,9,7,9 (.1.xx324)
9,7,9,x,0,x,0,7 (314x.x.2)
2,x,4,2,x,0,0,x (1x32x..x)
2,x,4,2,0,x,x,0 (1x32.xx.)
2,x,4,2,x,0,x,0 (1x32x.x.)
2,x,4,2,0,x,0,x (1x32.x.x)
9,7,9,x,x,0,x,0 (213xx.x.)
9,7,9,x,0,x,0,x (213x.x.x)
9,7,9,x,0,x,x,0 (213x.xx.)
9,7,9,x,x,0,0,x (213xx..x)
0,x,4,2,2,x,x,0 (.x312xx.)
0,x,4,2,2,x,0,x (.x312x.x)
0,x,4,2,x,2,x,0 (.x31x2x.)
0,x,4,2,x,2,0,x (.x31x2.x)
0,7,9,x,9,x,0,x (.12x3x.x)
0,7,9,x,9,x,x,0 (.12x3xx.)
0,x,x,2,2,x,4,0 (.xx12x3.)
2,x,x,2,0,x,4,0 (1xx2.x3.)
0,x,0,2,2,x,4,x (.x.12x3x)
0,x,0,2,x,2,4,x (.x.1x23x)
2,x,x,2,x,0,4,0 (1xx2x.3.)
0,x,x,2,x,2,4,0 (.xx1x23.)
2,x,0,2,x,0,4,x (1x.2x.3x)
2,x,0,2,0,x,4,x (1x.2.x3x)
0,7,9,x,x,9,x,0 (.12xx3x.)
0,7,9,x,x,9,0,x (.12xx3.x)
2,x,0,2,0,x,x,4 (1x.2.xx3)
0,x,0,2,2,x,x,4 (.x.12xx3)
2,x,0,2,x,0,x,4 (1x.2x.x3)
0,x,0,2,x,2,x,4 (.x.1x2x3)
2,x,x,2,0,x,0,4 (1xx2.x.3)
0,x,x,2,2,x,0,4 (.xx12x.3)
2,x,x,2,x,0,0,4 (1xx2x..3)
0,x,x,2,x,2,0,4 (.xx1x2.3)
9,7,x,x,x,0,9,0 (21xxx.3.)
9,7,x,x,0,x,9,0 (21xx.x3.)
0,7,x,x,x,9,9,0 (.1xxx23.)
0,7,0,x,x,9,9,x (.1.xx23x)
9,7,0,x,x,0,9,x (21.xx.3x)
0,7,0,x,9,x,9,x (.1.x2x3x)
9,7,0,x,0,x,9,x (21.x.x3x)
0,7,x,x,9,x,9,0 (.1xx2x3.)
0,7,x,x,x,9,0,9 (.1xxx2.3)
0,7,0,x,9,x,x,9 (.1.x2xx3)
9,7,x,x,x,0,0,9 (21xxx..3)
0,7,x,x,9,x,0,9 (.1xx2x.3)
9,7,x,x,0,x,0,9 (21xx.x.3)
0,7,0,x,x,9,x,9 (.1.xx2x3)
9,7,0,x,0,x,x,9 (21.x.xx3)
9,7,0,x,x,0,x,9 (21.xx.x3)