Mandolin Chord Chart and Tabs in Modal D Tuning

레°b9, 레 dimb9
Notes: 레, 파, 라♭, 도♭, 미♭
x,x,6,0,6,2,3,0 (xx3.412.)
x,x,3,0,6,2,6,0 (xx2.314.)
x,x,3,0,2,6,6,0 (xx2.134.)
x,x,6,0,2,6,3,0 (xx3.142.)
x,x,6,0,8,6,9,0 (xx1.324.)
x,x,9,0,6,8,6,0 (xx4.132.)
x,x,9,0,8,6,6,0 (xx4.312.)
x,x,6,0,6,8,9,0 (xx1.234.)
x,x,6,0,2,6,0,3 (xx3.14.2)
x,x,3,0,6,2,0,6 (xx2.31.4)
x,x,0,0,6,2,6,3 (xx..3142)
x,x,0,0,6,2,3,6 (xx..3124)
x,x,3,0,2,6,0,6 (xx2.13.4)
x,x,0,0,2,6,6,3 (xx..1342)
x,x,0,0,2,6,3,6 (xx..1324)
x,x,6,0,6,2,0,3 (xx3.41.2)
x,x,0,0,8,6,9,6 (xx..3142)
x,x,6,0,8,6,0,9 (xx1.32.4)
x,x,9,0,8,6,0,6 (xx4.31.2)
x,x,0,0,6,8,9,6 (xx..1342)
x,x,6,0,6,8,0,9 (xx1.23.4)
x,x,0,0,6,8,6,9 (xx..1324)
x,x,0,0,8,6,6,9 (xx..3124)
x,x,9,0,6,8,0,6 (xx4.13.2)
x,x,x,0,6,2,6,3 (xxx.3142)
x,x,x,0,2,6,3,6 (xxx.1324)
x,x,x,0,6,2,3,6 (xxx.3124)
x,x,x,0,2,6,6,3 (xxx.1342)
x,x,x,0,6,8,6,9 (xxx.1324)
x,x,x,0,8,6,9,6 (xxx.3142)
x,x,x,0,8,6,6,9 (xxx.3124)
x,x,x,0,6,8,9,6 (xxx.1342)
x,x,3,0,2,6,6,x (xx2.134x)
x,x,6,0,2,6,3,x (xx3.142x)
x,x,6,0,6,2,3,x (xx3.412x)
x,x,3,0,6,2,6,x (xx2.314x)
x,x,6,0,6,8,9,x (xx1.234x)
x,x,9,0,8,6,6,x (xx4.312x)
x,x,9,0,6,8,6,x (xx4.132x)
x,x,6,x,6,8,9,0 (xx1x234.)
x,x,6,0,8,6,9,x (xx1.324x)
x,x,6,x,8,6,9,0 (xx1x324.)
x,x,9,x,6,8,6,0 (xx4x132.)
x,x,9,x,8,6,6,0 (xx4x312.)
x,x,6,0,6,2,x,3 (xx3.41x2)
x,x,3,0,2,6,x,6 (xx2.13x4)
x,x,6,0,2,6,x,3 (xx3.14x2)
x,x,3,0,6,2,x,6 (xx2.31x4)
x,x,9,x,8,6,0,6 (xx4x31.2)
x,x,0,x,6,8,9,6 (xx.x1342)
x,x,9,x,6,8,0,6 (xx4x13.2)
x,x,6,x,6,8,0,9 (xx1x23.4)
x,x,9,0,6,8,x,6 (xx4.13x2)
x,x,0,x,8,6,9,6 (xx.x3142)
x,x,6,x,8,6,0,9 (xx1x32.4)
x,x,6,0,8,6,x,9 (xx1.32x4)
x,x,0,x,6,8,6,9 (xx.x1324)
x,x,9,0,8,6,x,6 (xx4.31x2)
x,x,6,0,6,8,x,9 (xx1.23x4)
x,x,0,x,8,6,6,9 (xx.x3124)
6,x,3,0,2,x,6,0 (3x2.1x4.)
6,x,6,0,2,x,3,0 (3x4.1x2.)
2,x,6,0,6,x,3,0 (1x3.4x2.)
6,x,6,0,x,2,3,0 (3x4.x12.)
2,x,6,0,x,6,3,0 (1x3.x42.)
2,x,3,0,x,6,6,0 (1x2.x34.)
6,x,3,0,x,2,6,0 (3x2.x14.)
2,x,3,0,6,x,6,0 (1x2.3x4.)
6,x,6,0,x,8,9,0 (1x2.x34.)
8,x,6,0,x,6,9,0 (3x1.x24.)
6,x,9,0,8,x,6,0 (1x4.3x2.)
6,x,6,0,8,x,9,0 (1x2.3x4.)
8,x,6,0,6,x,9,0 (3x1.2x4.)
8,x,9,0,6,x,6,0 (3x4.1x2.)
6,x,9,0,x,8,6,0 (1x4.x32.)
8,x,9,0,x,6,6,0 (3x4.x12.)
6,x,0,0,x,2,3,6 (3x..x124)
2,x,3,0,x,6,0,6 (1x2.x3.4)
2,x,0,0,6,x,6,3 (1x..3x42)
6,x,6,0,2,x,0,3 (3x4.1x.2)
6,x,0,0,x,2,6,3 (3x..x142)
6,x,3,0,x,2,0,6 (3x2.x1.4)
2,x,6,0,x,6,0,3 (1x3.x4.2)
2,x,0,0,6,x,3,6 (1x..3x24)
6,x,6,0,x,2,0,3 (3x4.x1.2)
2,x,6,0,6,x,0,3 (1x3.4x.2)
2,x,0,0,x,6,6,3 (1x..x342)
6,x,0,0,2,x,6,3 (3x..1x42)
6,x,3,0,2,x,0,6 (3x2.1x.4)
2,x,0,0,x,6,3,6 (1x..x324)
2,x,3,0,6,x,0,6 (1x2.3x.4)
6,x,0,0,2,x,3,6 (3x..1x24)
8,x,9,0,6,x,0,6 (3x4.1x.2)
6,x,9,0,8,x,0,6 (1x4.3x.2)
8,x,0,0,6,x,9,6 (3x..1x42)
6,x,0,0,8,x,9,6 (1x..3x42)
8,x,0,0,x,6,9,6 (3x..x142)
6,x,6,0,x,8,0,9 (1x2.x3.4)
8,x,9,0,x,6,0,6 (3x4.x1.2)
8,x,0,0,6,x,6,9 (3x..1x24)
6,x,0,0,x,8,9,6 (1x..x342)
6,x,0,0,8,x,6,9 (1x..3x24)
6,x,6,0,8,x,0,9 (1x2.3x.4)
6,x,9,0,x,8,0,6 (1x4.x3.2)
8,x,0,0,x,6,6,9 (3x..x124)
6,x,0,0,x,8,6,9 (1x..x324)
8,x,6,0,6,x,0,9 (3x1.2x.4)
8,x,6,0,x,6,0,9 (3x1.x2.4)
2,x,3,0,6,x,6,x (1x2.3x4x)
6,x,6,0,2,x,3,x (3x4.1x2x)
2,x,6,0,x,6,3,x (1x3.x42x)
6,x,3,0,x,2,6,x (3x2.x14x)
6,x,6,0,x,2,3,x (3x4.x12x)
2,x,3,0,x,6,6,x (1x2.x34x)
2,x,6,0,6,x,3,x (1x3.4x2x)
6,x,3,0,2,x,6,x (3x2.1x4x)
6,x,6,0,x,8,9,x (1x2.x34x)
6,x,6,x,x,8,9,0 (1x2xx34.)
6,x,9,0,8,x,6,x (1x4.3x2x)
8,x,9,0,x,6,6,x (3x4.x12x)
6,x,9,0,x,8,6,x (1x4.x32x)
8,x,6,0,6,x,9,x (3x1.2x4x)
6,x,6,0,8,x,9,x (1x2.3x4x)
8,x,6,0,x,6,9,x (3x1.x24x)
8,x,9,0,6,x,6,x (3x4.1x2x)
8,x,9,x,6,x,6,0 (3x4x1x2.)
6,x,9,x,8,x,6,0 (1x4x3x2.)
8,x,9,x,x,6,6,0 (3x4xx12.)
6,x,9,x,x,8,6,0 (1x4xx32.)
8,x,6,x,6,x,9,0 (3x1x2x4.)
6,x,6,x,8,x,9,0 (1x2x3x4.)
8,x,6,x,x,6,9,0 (3x1xx24.)
2,x,x,0,6,x,3,6 (1xx.3x24)
2,x,x,0,x,6,3,6 (1xx.x324)
6,x,x,0,x,2,3,6 (3xx.x124)
2,x,3,0,6,x,x,6 (1x2.3xx4)
6,x,3,0,2,x,x,6 (3x2.1xx4)
2,x,x,0,x,6,6,3 (1xx.x342)
2,x,3,0,x,6,x,6 (1x2.x3x4)
6,x,3,0,x,2,x,6 (3x2.x1x4)
6,x,x,0,x,2,6,3 (3xx.x142)
2,x,x,0,6,x,6,3 (1xx.3x42)
6,x,x,0,2,x,6,3 (3xx.1x42)
2,x,6,0,x,6,x,3 (1x3.x4x2)
6,x,6,0,2,x,x,3 (3x4.1xx2)
2,x,6,0,6,x,x,3 (1x3.4xx2)
6,x,x,0,2,x,3,6 (3xx.1x24)
6,x,6,0,x,2,x,3 (3x4.x1x2)
6,x,0,x,8,x,9,6 (1x.x3x42)
8,x,6,0,x,6,x,9 (3x1.x2x4)
8,x,6,x,6,x,0,9 (3x1x2x.4)
8,x,6,0,6,x,x,9 (3x1.2xx4)
6,x,6,x,8,x,0,9 (1x2x3x.4)
6,x,x,0,x,8,9,6 (1xx.x342)
8,x,6,x,x,6,0,9 (3x1xx2.4)
6,x,0,x,x,8,9,6 (1x.xx342)
8,x,9,0,6,x,x,6 (3x4.1xx2)
8,x,x,0,x,6,9,6 (3xx.x142)
6,x,6,x,x,8,0,9 (1x2xx3.4)
8,x,0,x,x,6,9,6 (3x.xx142)
6,x,9,0,8,x,x,6 (1x4.3xx2)
6,x,x,0,8,x,9,6 (1xx.3x42)
8,x,0,x,6,x,6,9 (3x.x1x24)
8,x,x,0,6,x,6,9 (3xx.1x24)
6,x,6,0,8,x,x,9 (1x2.3xx4)
6,x,0,x,8,x,6,9 (1x.x3x24)
6,x,x,0,8,x,6,9 (1xx.3x24)
8,x,x,0,6,x,9,6 (3xx.1x42)
8,x,0,x,x,6,6,9 (3x.xx124)
8,x,x,0,x,6,6,9 (3xx.x124)
8,x,0,x,6,x,9,6 (3x.x1x42)
8,x,9,0,x,6,x,6 (3x4.x1x2)
6,x,9,0,x,8,x,6 (1x4.x3x2)
8,x,9,x,6,x,0,6 (3x4x1x.2)
6,x,0,x,x,8,6,9 (1x.xx324)
6,x,x,0,x,8,6,9 (1xx.x324)
6,x,9,x,8,x,0,6 (1x4x3x.2)
8,x,9,x,x,6,0,6 (3x4xx1.2)
6,x,9,x,x,8,0,6 (1x4xx3.2)
6,x,6,0,x,8,x,9 (1x2.x3x4)