Mandolin Chord Chart and Tabs in Irish Tuning

파bm11b5b9, 파bm11°5b9, 파b−11b5b9, 파b−11°5b9
Notes: 파♭, 라♭♭, 도♭♭, 미♭♭, 솔♭♭, 시♭♭
x,x,5,2,1,0,3,0 (xx421.3.)
x,x,3,2,0,1,5,0 (xx32.14.)
x,x,5,2,0,1,3,0 (xx42.13.)
x,x,3,2,1,0,5,0 (xx321.4.)
x,x,5,2,1,0,0,3 (xx421..3)
x,x,0,2,0,1,3,5 (xx.2.134)
x,x,0,2,1,0,3,5 (xx.21.34)
x,x,5,2,0,1,0,3 (xx42.1.3)
x,x,3,2,0,1,0,5 (xx32.1.4)
x,x,3,2,1,0,0,5 (xx321..4)
x,x,0,2,0,1,5,3 (xx.2.143)
x,x,0,2,1,0,5,3 (xx.21.43)
0,9,8,8,8,0,x,0 (.4123.x.)
0,9,8,8,8,0,0,x (.4123..x)
0,9,7,8,8,0,0,x (.4123..x)
0,x,2,2,0,1,3,0 (.x23.14.)
0,x,2,2,1,0,3,0 (.x231.4.)
0,9,7,8,8,0,x,0 (.4123.x.)
0,x,3,2,1,0,2,0 (.x421.3.)
0,x,3,2,0,1,2,0 (.x42.13.)
0,9,8,8,0,8,0,x (.412.3.x)
0,9,8,8,0,8,x,0 (.412.3x.)
0,x,3,2,1,0,0,2 (.x421..3)
0,x,0,2,1,0,2,3 (.x.21.34)
0,9,7,8,0,8,0,x (.412.3.x)
0,x,0,2,0,1,2,3 (.x.2.134)
0,x,2,2,1,0,0,3 (.x231..4)
0,x,0,2,0,1,3,2 (.x.2.143)
0,x,0,2,1,0,3,2 (.x.21.43)
0,x,2,2,0,1,0,3 (.x23.1.4)
0,9,7,8,0,8,x,0 (.412.3x.)
0,x,3,2,0,1,0,2 (.x42.1.3)
0,9,5,8,8,0,0,x (.4123..x)
0,9,5,8,8,0,x,0 (.4123.x.)
0,9,0,8,0,8,8,x (.4.1.23x)
0,9,x,8,0,8,8,0 (.4x1.23.)
0,9,0,8,8,0,8,x (.4.12.3x)
0,9,x,8,8,0,8,0 (.4x12.3.)
0,x,3,2,0,1,5,0 (.x32.14.)
0,9,7,x,0,8,8,0 (.41x.23.)
0,9,8,x,0,8,7,0 (.42x.31.)
x,9,8,5,8,0,0,x (x4213..x)
0,9,x,8,0,8,7,0 (.4x2.31.)
0,x,5,2,1,0,3,0 (.x421.3.)
x,9,5,8,8,0,0,x (x4123..x)
0,9,7,x,8,0,8,0 (.41x2.3.)
0,9,0,8,8,0,7,x (.4.23.1x)
0,x,5,2,0,1,3,0 (.x42.13.)
0,9,0,8,0,8,7,x (.4.2.31x)
0,9,x,8,8,0,7,0 (.4x23.1.)
x,9,8,5,8,0,x,0 (x4213.x.)
0,x,3,2,1,0,5,0 (.x321.4.)
x,9,5,8,8,0,x,0 (x4123.x.)
0,9,8,x,8,0,7,0 (.42x3.1.)
0,9,5,8,0,8,x,0 (.412.3x.)
0,9,x,8,0,8,0,8 (.4x1.2.3)
0,9,5,8,0,8,0,x (.412.3.x)
0,9,0,8,8,0,x,8 (.4.12.x3)
0,9,0,8,0,8,x,8 (.4.1.2x3)
0,9,x,8,8,0,0,8 (.4x12..3)
0,x,3,2,1,0,0,5 (.x321..4)
0,9,0,x,0,8,8,7 (.4.x.231)
0,9,0,x,8,0,8,7 (.4.x2.31)
0,x,0,2,0,1,5,3 (.x.2.143)
0,9,x,8,0,8,0,7 (.4x2.3.1)
0,x,0,2,1,0,5,3 (.x.21.43)
0,9,8,x,0,8,0,7 (.42x.3.1)
0,9,x,8,8,0,0,7 (.4x23..1)
0,9,8,x,8,0,0,7 (.42x3..1)
0,9,0,8,0,8,x,7 (.4.2.3x1)
0,9,0,8,8,0,x,7 (.4.23.x1)
0,9,7,x,0,8,0,8 (.41x.2.3)
0,x,0,2,0,1,3,5 (.x.2.134)
x,9,8,5,0,8,0,x (x421.3.x)
0,x,5,2,0,1,0,3 (.x42.1.3)
x,9,5,8,0,8,0,x (x412.3.x)
0,x,0,2,1,0,3,5 (.x.21.34)
0,x,5,2,1,0,0,3 (.x421..3)
x,9,8,5,0,8,x,0 (x421.3x.)
x,9,5,8,0,8,x,0 (x412.3x.)
0,9,0,x,0,8,7,8 (.4.x.213)
0,9,7,x,8,0,0,8 (.41x2..3)
0,x,3,2,0,1,0,5 (.x32.1.4)
0,9,0,x,8,0,7,8 (.4.x2.13)
0,9,8,x,0,8,5,0 (.42x.31.)
0,9,x,8,8,0,5,0 (.4x23.1.)
0,9,x,8,0,8,5,0 (.4x2.31.)
0,9,5,x,8,0,8,0 (.41x2.3.)
0,9,8,x,8,0,5,0 (.42x3.1.)
0,9,5,x,0,8,8,0 (.41x.23.)
0,9,0,8,0,8,5,x (.4.2.31x)
0,9,0,8,8,0,5,x (.4.23.1x)
x,9,x,5,0,8,8,0 (x4x1.23.)
x,9,0,5,0,8,8,x (x4.1.23x)
x,9,x,8,0,8,5,0 (x4x2.31.)
x,9,x,5,8,0,8,0 (x4x12.3.)
x,9,8,x,8,0,5,0 (x42x3.1.)
x,9,0,5,8,0,8,x (x4.12.3x)
x,9,5,x,0,8,8,0 (x41x.23.)
x,9,x,8,8,0,5,0 (x4x23.1.)
x,9,8,x,0,8,5,0 (x42x.31.)
x,9,0,8,8,0,5,x (x4.23.1x)
x,9,5,x,8,0,8,0 (x41x2.3.)
x,9,0,8,0,8,5,x (x4.2.31x)
0,9,5,x,0,8,0,8 (.41x.2.3)
0,9,0,x,0,8,5,8 (.4.x.213)
0,9,0,x,8,0,8,5 (.4.x2.31)
0,9,5,x,8,0,0,8 (.41x2..3)
0,9,x,8,0,8,0,5 (.4x2.3.1)
0,9,8,x,0,8,0,5 (.42x.3.1)
0,9,0,x,0,8,8,5 (.4.x.231)
0,9,x,8,8,0,0,5 (.4x23..1)
0,9,8,x,8,0,0,5 (.42x3..1)
0,9,0,x,8,0,5,8 (.4.x2.13)
0,9,0,8,0,8,x,5 (.4.2.3x1)
0,9,0,8,8,0,x,5 (.4.23.x1)
x,9,8,x,0,8,0,5 (x42x.3.1)
x,9,0,x,8,0,8,5 (x4.x2.31)
x,9,x,5,0,8,0,8 (x4x1.2.3)
x,9,0,5,8,0,x,8 (x4.12.x3)
x,9,x,8,0,8,0,5 (x4x2.3.1)
x,9,0,x,8,0,5,8 (x4.x2.13)
x,9,5,x,0,8,0,8 (x41x.2.3)
x,9,x,5,8,0,0,8 (x4x12..3)
x,9,x,8,8,0,0,5 (x4x23..1)
x,9,0,x,0,8,5,8 (x4.x.213)
x,9,8,x,8,0,0,5 (x42x3..1)
x,9,5,x,8,0,0,8 (x41x2..3)
x,9,0,5,0,8,x,8 (x4.1.2x3)
x,9,0,8,0,8,x,5 (x4.2.3x1)
x,9,0,x,0,8,8,5 (x4.x.231)
x,9,0,8,8,0,x,5 (x4.23.x1)
0,x,3,2,1,0,x,0 (.x321.x.)
0,x,3,2,1,0,0,x (.x321..x)
0,x,3,2,0,1,0,x (.x32.1.x)
0,x,3,2,0,1,x,0 (.x32.1x.)
0,9,8,x,8,0,0,x (.31x2..x)
0,9,8,x,8,0,x,0 (.31x2.x.)
0,x,x,2,1,0,3,0 (.xx21.3.)
0,x,x,2,0,1,3,0 (.xx2.13.)
0,x,0,2,0,1,3,x (.x.2.13x)
0,x,0,2,1,0,3,x (.x.21.3x)
0,9,8,x,0,8,0,x (.31x.2.x)
0,9,8,x,0,8,x,0 (.31x.2x.)
0,9,7,8,8,x,x,0 (.4123xx.)
0,9,8,7,8,x,x,0 (.4213xx.)
0,x,x,2,0,1,0,3 (.xx2.1.3)
0,9,8,7,8,x,0,x (.4213x.x)
0,9,7,8,8,x,0,x (.4123x.x)
0,x,0,2,1,0,x,3 (.x.21.x3)
0,x,0,2,0,1,x,3 (.x.2.1x3)
0,x,x,2,1,0,0,3 (.xx21..3)
0,9,x,x,8,0,8,0 (.3xx1.2.)
0,9,0,x,8,0,8,x (.3.x1.2x)
10,9,8,x,10,0,0,x (321x4..x)
0,9,x,x,0,8,8,0 (.3xx.12.)
10,9,8,x,10,0,x,0 (321x4.x.)
0,9,0,x,0,8,8,x (.3.x.12x)
0,9,7,8,x,8,0,x (.412x3.x)
0,9,8,7,x,8,x,0 (.421x3x.)
0,9,7,8,x,8,x,0 (.412x3x.)
0,9,8,7,x,8,0,x (.421x3.x)
3,x,5,2,0,x,3,0 (2x41.x3.)
0,9,x,x,0,8,0,8 (.3xx.1.2)
0,9,0,x,0,8,x,8 (.3.x.1x2)
0,9,x,x,8,0,0,8 (.3xx1..2)
0,9,0,x,8,0,x,8 (.3.x1.x2)
10,9,8,x,0,10,x,0 (321x.4x.)
10,9,8,x,0,10,0,x (321x.4.x)
3,x,3,2,x,0,5,0 (2x31x.4.)
3,x,3,2,0,x,5,0 (2x31.x4.)
3,x,5,2,x,0,3,0 (2x41x.3.)
0,9,7,x,x,8,8,0 (.41xx23.)
0,9,8,x,8,x,7,0 (.42x3x1.)
0,9,x,8,8,x,7,0 (.4x23x1.)
0,9,8,x,x,8,7,0 (.42xx31.)
0,9,0,8,8,x,7,x (.4.23x1x)
0,9,x,8,x,8,7,0 (.4x2x31.)
0,9,0,7,x,8,8,x (.4.1x23x)
0,9,7,x,8,x,8,0 (.41x2x3.)
0,9,0,8,x,8,7,x (.4.2x31x)
0,9,x,7,x,8,8,0 (.4x1x23.)
0,9,0,7,8,x,8,x (.4.12x3x)
0,9,x,7,8,x,8,0 (.4x12x3.)
10,9,0,x,10,0,8,x (32.x4.1x)
10,9,x,x,0,10,8,0 (32xx.41.)
3,x,5,2,0,x,0,3 (2x41.x.3)
3,x,0,2,x,0,3,5 (2x.1x.34)
10,9,x,x,10,0,8,0 (32xx4.1.)
3,x,0,2,0,x,3,5 (2x.1.x34)
10,9,0,x,0,10,8,x (32.x.41x)
3,x,0,2,x,0,5,3 (2x.1x.43)
3,x,5,2,x,0,0,3 (2x41x..3)
3,x,3,2,0,x,0,5 (2x31.x.4)
3,x,3,2,x,0,0,5 (2x31x..4)
3,x,0,2,0,x,5,3 (2x.1.x43)
0,9,0,x,8,x,8,7 (.4.x2x31)
0,9,8,x,x,8,0,7 (.42xx3.1)
0,9,0,7,x,8,x,8 (.4.1x2x3)
0,9,7,x,x,8,0,8 (.41xx2.3)
0,9,x,7,x,8,0,8 (.4x1x2.3)
0,9,0,8,8,x,x,7 (.4.23xx1)
0,9,0,x,x,8,8,7 (.4.xx231)
0,9,8,x,8,x,0,7 (.42x3x.1)
0,9,0,x,x,8,7,8 (.4.xx213)
0,9,7,x,8,x,0,8 (.41x2x.3)
0,9,x,7,8,x,0,8 (.4x12x.3)
0,9,0,x,8,x,7,8 (.4.x2x13)
0,9,0,7,8,x,x,8 (.4.12xx3)
0,9,0,8,x,8,x,7 (.4.2x3x1)
0,9,x,8,x,8,0,7 (.4x2x3.1)
0,9,x,8,8,x,0,7 (.4x23x.1)
10,9,x,x,0,10,0,8 (32xx.4.1)
10,9,x,x,10,0,0,8 (32xx4..1)
10,9,0,x,0,10,x,8 (32.x.4x1)
10,9,0,x,10,0,x,8 (32.x4.x1)