Mandolin Chord Chart and Tabs in Modal D Tuning

変ヘ13(no9)
Notes: 変ヘ, 変イ, 変ハ, 変ホ♭, 変ロ♭, 変ニ
11,7,11,9,0,0,0,0 (3142....)
11,7,9,11,0,0,0,0 (3124....)
0,7,9,11,11,0,0,0 (.1234...)
0,7,11,9,11,0,0,0 (.1324...)
0,7,9,11,0,11,0,0 (.123.4..)
0,7,11,9,0,11,0,0 (.132.4..)
0,7,0,11,11,0,9,0 (.1.34.2.)
0,7,0,11,0,11,9,0 (.1.3.42.)
11,7,0,11,0,0,9,0 (31.4..2.)
11,7,0,9,0,0,11,0 (31.2..4.)
0,7,0,9,11,0,11,0 (.1.23.4.)
0,7,0,9,0,11,11,0 (.1.2.34.)
x,7,11,9,11,0,0,0 (x1324...)
x,7,9,11,11,0,0,0 (x1234...)
0,7,0,11,11,0,0,9 (.1.34..2)
11,7,0,11,0,0,0,9 (31.4...2)
0,7,0,11,0,11,0,9 (.1.3.4.2)
11,7,0,9,0,0,0,11 (31.2...4)
0,7,0,9,11,0,0,11 (.1.23..4)
0,7,0,9,0,11,0,11 (.1.2.3.4)
x,7,9,11,0,11,0,0 (x123.4..)
x,7,11,9,0,11,0,0 (x132.4..)
x,7,0,9,0,11,11,0 (x1.2.34.)
x,7,0,9,11,0,11,0 (x1.23.4.)
x,7,0,11,11,0,9,0 (x1.34.2.)
x,7,0,11,0,11,9,0 (x1.3.42.)
x,7,0,9,0,11,0,11 (x1.2.3.4)
x,7,0,11,0,11,0,9 (x1.3.4.2)
x,7,0,9,11,0,0,11 (x1.23..4)
x,7,0,11,11,0,0,9 (x1.34..2)
2,x,6,2,4,0,0,0 (1x423...)
4,x,6,2,2,0,0,0 (3x412...)
0,x,6,2,2,4,0,0 (.x4123..)
4,x,6,2,0,2,0,0 (3x41.2..)
0,x,6,2,4,2,0,0 (.x4132..)
2,x,6,2,0,4,0,0 (1x42.3..)
4,x,0,2,2,0,6,0 (3x.12.4.)
4,x,0,2,0,2,6,0 (3x.1.24.)
0,x,0,2,4,2,6,0 (.x.1324.)
0,x,0,2,2,4,6,0 (.x.1234.)
2,x,0,2,0,4,6,0 (1x.2.34.)
2,x,0,2,4,0,6,0 (1x.23.4.)
11,7,11,9,0,0,0,x (3142...x)
11,7,9,11,x,0,0,0 (3124x...)
11,7,9,11,0,0,0,x (3124...x)
11,7,9,11,0,x,0,0 (3124.x..)
11,7,11,9,0,x,0,0 (3142.x..)
11,7,9,11,0,0,x,0 (3124..x.)
11,7,11,9,0,0,x,0 (3142..x.)
11,7,11,9,x,0,0,0 (3142x...)
2,x,0,2,0,4,0,6 (1x.2.3.4)
4,x,0,2,2,0,0,6 (3x.12..4)
0,x,0,2,4,2,0,6 (.x.132.4)
4,x,0,2,0,2,0,6 (3x.1.2.4)
0,x,0,2,2,4,0,6 (.x.123.4)
2,x,0,2,4,0,0,6 (1x.23..4)
0,7,9,11,11,0,0,x (.1234..x)
0,7,9,11,11,x,0,0 (.1234x..)
0,7,11,9,11,0,x,0 (.1324.x.)
0,7,11,9,11,0,0,x (.1324..x)
0,7,9,11,11,0,x,0 (.1234.x.)
0,7,11,9,11,x,0,0 (.1324x..)
0,7,11,9,0,11,0,x (.132.4.x)
0,7,11,9,0,11,x,0 (.132.4x.)
0,7,9,11,0,11,0,x (.123.4.x)
0,7,11,9,x,11,0,0 (.132x4..)
0,7,9,11,x,11,0,0 (.123x4..)
0,7,9,11,0,11,x,0 (.123.4x.)
0,7,x,11,0,11,9,0 (.1x3.42.)
0,7,0,11,11,0,9,x (.1.34.2x)
0,7,0,9,11,x,11,0 (.1.23x4.)
0,7,x,9,11,0,11,0 (.1x23.4.)
0,7,0,9,0,11,11,x (.1.2.34x)
0,7,9,x,11,0,11,0 (.12x3.4.)
11,7,0,11,0,0,9,x (31.4..2x)
0,7,0,11,0,11,9,x (.1.3.42x)
0,7,x,9,0,11,11,0 (.1x2.34.)
11,7,x,9,0,0,11,0 (31x2..4.)
0,7,9,x,0,11,11,0 (.12x.34.)
11,7,9,x,0,0,11,0 (312x..4.)
0,7,0,9,x,11,11,0 (.1.2x34.)
11,7,0,11,0,x,9,0 (31.4.x2.)
0,7,0,11,11,x,9,0 (.1.34x2.)
11,7,0,11,x,0,9,0 (31.4x.2.)
11,7,11,x,0,0,9,0 (314x..2.)
11,7,x,11,0,0,9,0 (31x4..2.)
11,7,0,9,0,x,11,0 (31.2.x4.)
11,7,0,9,x,0,11,0 (31.2x.4.)
0,7,11,x,11,0,9,0 (.13x4.2.)
0,7,x,11,11,0,9,0 (.1x34.2.)
11,7,0,9,0,0,11,x (31.2..4x)
0,7,0,9,11,0,11,x (.1.23.4x)
0,7,0,11,x,11,9,0 (.1.3x42.)
0,7,11,x,0,11,9,0 (.13x.42.)
x,7,9,11,11,0,x,0 (x1234.x.)
x,7,11,9,11,0,x,0 (x1324.x.)
x,7,9,11,11,0,0,x (x1234..x)
x,7,11,9,11,0,0,x (x1324..x)
0,7,0,x,0,11,9,11 (.1.x.324)
11,7,0,x,0,0,11,9 (31.x..42)
0,7,9,x,0,11,0,11 (.12x.3.4)
0,7,x,11,11,0,0,9 (.1x34..2)
0,7,0,9,x,11,0,11 (.1.2x3.4)
11,7,11,x,0,0,0,9 (314x...2)
11,7,x,9,0,0,0,11 (31x2...4)
11,7,9,x,0,0,0,11 (312x...4)
0,7,9,x,11,0,0,11 (.12x3..4)
11,7,0,9,x,0,0,11 (31.2x..4)
0,7,0,9,11,x,0,11 (.1.23x.4)
0,7,11,x,0,11,0,9 (.13x.4.2)
11,7,x,11,0,0,0,9 (31x4...2)
0,7,0,x,11,0,11,9 (.1.x3.42)
0,7,0,11,0,11,x,9 (.1.3.4x2)
0,7,x,11,0,11,0,9 (.1x3.4.2)
0,7,0,11,11,x,0,9 (.1.34x.2)
0,7,0,x,0,11,11,9 (.1.x.342)
0,7,0,11,11,0,x,9 (.1.34.x2)
0,7,x,9,11,0,0,11 (.1x23..4)
11,7,0,x,0,0,9,11 (31.x..24)
11,7,0,9,0,x,0,11 (31.2.x.4)
0,7,0,9,0,11,x,11 (.1.2.3x4)
0,7,x,9,0,11,0,11 (.1x2.3.4)
11,7,0,9,0,0,x,11 (31.2..x4)
11,7,0,11,0,0,x,9 (31.4..x2)
0,7,0,x,11,0,9,11 (.1.x3.24)
0,7,11,x,11,0,0,9 (.13x4..2)
0,7,0,11,x,11,0,9 (.1.3x4.2)
11,7,0,11,x,0,0,9 (31.4x..2)
0,7,0,9,11,0,x,11 (.1.23.x4)
11,7,0,11,0,x,0,9 (31.4.x.2)
x,7,9,11,0,11,x,0 (x123.4x.)
x,7,11,9,0,11,0,x (x132.4.x)
x,7,11,9,0,11,x,0 (x132.4x.)
x,7,9,11,0,11,0,x (x123.4.x)
x,7,11,x,11,0,9,0 (x13x4.2.)
x,7,9,x,11,0,11,0 (x12x3.4.)
x,7,x,9,11,0,11,0 (x1x23.4.)
x,7,0,9,0,11,11,x (x1.2.34x)
x,7,x,11,0,11,9,0 (x1x3.42.)
x,7,11,x,0,11,9,0 (x13x.42.)
x,7,9,x,0,11,11,0 (x12x.34.)
x,7,x,9,0,11,11,0 (x1x2.34.)
x,7,x,11,11,0,9,0 (x1x34.2.)
x,7,0,11,11,0,9,x (x1.34.2x)
x,7,0,11,0,11,9,x (x1.3.42x)
x,7,0,9,11,0,11,x (x1.23.4x)
x,7,0,x,11,0,9,11 (x1.x3.24)
x,7,0,9,0,11,x,11 (x1.2.3x4)
x,7,0,11,11,0,x,9 (x1.34.x2)
x,7,x,9,11,0,0,11 (x1x23..4)
x,7,9,x,11,0,0,11 (x12x3..4)
x,7,0,x,0,11,9,11 (x1.x.324)
x,7,x,11,11,0,0,9 (x1x34..2)
x,7,0,11,0,11,x,9 (x1.3.4x2)
x,7,0,x,11,0,11,9 (x1.x3.42)
x,7,x,9,0,11,0,11 (x1x2.3.4)
x,7,11,x,11,0,0,9 (x13x4..2)
x,7,11,x,0,11,0,9 (x13x.4.2)
x,7,0,9,11,0,x,11 (x1.23.x4)
x,7,x,11,0,11,0,9 (x1x3.4.2)
x,7,0,x,0,11,11,9 (x1.x.342)
x,7,9,x,0,11,0,11 (x12x.3.4)
4,x,6,2,2,0,x,0 (3x412.x.)
4,x,6,2,2,0,0,x (3x412..x)
2,x,6,2,4,0,0,x (1x423..x)
2,x,6,2,4,0,x,0 (1x423.x.)
0,x,6,2,2,4,x,0 (.x4123x.)
2,x,6,2,0,4,x,0 (1x42.3x.)
4,x,6,2,0,2,x,0 (3x41.2x.)
2,x,6,2,0,4,0,x (1x42.3.x)
0,x,6,2,4,2,0,x (.x4132.x)
4,x,6,2,0,2,0,x (3x41.2.x)
0,x,6,2,4,2,x,0 (.x4132x.)
0,x,6,2,2,4,0,x (.x4123.x)
2,x,0,2,0,4,6,x (1x.2.34x)
2,x,x,2,4,0,6,0 (1xx23.4.)
0,x,x,2,4,2,6,0 (.xx1324.)
2,x,x,2,0,4,6,0 (1xx2.34.)
0,x,0,2,4,2,6,x (.x.1324x)
0,x,x,2,2,4,6,0 (.xx1234.)
4,x,0,2,0,2,6,x (3x.1.24x)
2,x,0,2,4,0,6,x (1x.23.4x)
4,x,0,2,2,0,6,x (3x.12.4x)
4,x,x,2,0,2,6,0 (3xx1.24.)
0,x,0,2,2,4,6,x (.x.1234x)
4,x,x,2,2,0,6,0 (3xx12.4.)
11,7,9,11,x,0,x,0 (3124x.x.)
11,7,9,11,x,0,0,x (3124x..x)
11,7,11,9,0,x,x,0 (3142.xx.)
11,7,9,11,0,x,x,0 (3124.xx.)
11,7,11,9,0,x,0,x (3142.x.x)
11,7,9,11,0,x,0,x (3124.x.x)
11,7,11,9,x,0,0,x (3142x..x)
11,7,11,9,x,0,x,0 (3142x.x.)
0,x,0,2,2,4,x,6 (.x.123x4)
4,x,x,2,2,0,0,6 (3xx12..4)
0,x,x,2,2,4,0,6 (.xx123.4)
2,x,x,2,0,4,0,6 (1xx2.3.4)
0,x,x,2,4,2,0,6 (.xx132.4)
4,x,x,2,0,2,0,6 (3xx1.2.4)
2,x,x,2,4,0,0,6 (1xx23..4)
4,x,0,2,2,0,x,6 (3x.12.x4)
2,x,0,2,4,0,x,6 (1x.23.x4)
2,x,0,2,0,4,x,6 (1x.2.3x4)
0,x,0,2,4,2,x,6 (.x.132x4)
4,x,0,2,0,2,x,6 (3x.1.2x4)
0,7,11,9,11,x,x,0 (.1324xx.)
0,7,9,11,11,x,0,x (.1234x.x)
0,7,11,9,11,x,0,x (.1324x.x)
0,7,9,11,11,x,x,0 (.1234xx.)
0,7,9,11,x,11,0,x (.123x4.x)
0,7,9,11,x,11,x,0 (.123x4x.)
0,7,11,9,x,11,0,x (.132x4.x)
0,7,11,9,x,11,x,0 (.132x4x.)
11,7,x,9,0,x,11,0 (31x2.x4.)
0,7,0,9,11,x,11,x (.1.23x4x)
11,7,0,9,x,0,11,x (31.2x.4x)
0,7,0,9,x,11,11,x (.1.2x34x)
11,7,0,11,x,0,9,x (31.4x.2x)
0,7,0,11,x,11,9,x (.1.3x42x)
11,7,9,x,0,x,11,0 (312x.x4.)
0,7,x,9,x,11,11,0 (.1x2x34.)
11,7,0,11,0,x,9,x (31.4.x2x)
0,7,9,x,x,11,11,0 (.12xx34.)
11,7,x,9,x,0,11,0 (31x2x.4.)
0,7,0,11,11,x,9,x (.1.34x2x)
11,7,0,9,0,x,11,x (31.2.x4x)
11,7,11,x,0,x,9,0 (314x.x2.)
11,7,9,x,x,0,11,0 (312xx.4.)
0,7,x,9,11,x,11,0 (.1x23x4.)
0,7,9,x,11,x,11,0 (.12x3x4.)
11,7,x,11,0,x,9,0 (31x4.x2.)
0,7,11,x,11,x,9,0 (.13x4x2.)
0,7,x,11,x,11,9,0 (.1x3x42.)
0,7,x,11,11,x,9,0 (.1x34x2.)
11,7,11,x,x,0,9,0 (314xx.2.)
0,7,11,x,x,11,9,0 (.13xx42.)
11,7,x,11,x,0,9,0 (31x4x.2.)
11,7,0,x,0,x,11,9 (31.x.x42)
0,7,x,9,11,x,0,11 (.1x23x.4)
11,7,9,x,x,0,0,11 (312xx..4)
11,7,x,9,x,0,0,11 (31x2x..4)
11,7,x,9,0,x,0,11 (31x2.x.4)
11,7,9,x,0,x,0,11 (312x.x.4)
11,7,11,x,x,0,0,9 (314xx..2)
0,7,0,9,x,11,x,11 (.1.2x3x4)
11,7,0,9,x,0,x,11 (31.2x.x4)
0,7,0,9,11,x,x,11 (.1.23xx4)
11,7,0,9,0,x,x,11 (31.2.xx4)
0,7,0,x,x,11,11,9 (.1.xx342)
11,7,0,x,x,0,11,9 (31.xx.42)
0,7,0,x,11,x,11,9 (.1.x3x42)
0,7,9,x,x,11,0,11 (.12xx3.4)
0,7,x,9,x,11,0,11 (.1x2x3.4)
0,7,9,x,11,x,0,11 (.12x3x.4)
0,7,x,11,x,11,0,9 (.1x3x4.2)
0,7,11,x,x,11,0,9 (.13xx4.2)
11,7,0,11,0,x,x,9 (31.4.xx2)
0,7,0,11,11,x,x,9 (.1.34xx2)
11,7,0,11,x,0,x,9 (31.4x.x2)
0,7,0,11,x,11,x,9 (.1.3x4x2)
11,7,0,x,0,x,9,11 (31.x.x24)
0,7,0,x,11,x,9,11 (.1.x3x24)
11,7,0,x,x,0,9,11 (31.xx.24)
11,7,11,x,0,x,0,9 (314x.x.2)
11,7,x,11,0,x,0,9 (31x4.x.2)
0,7,11,x,11,x,0,9 (.13x4x.2)
0,7,0,x,x,11,9,11 (.1.xx324)
11,7,x,11,x,0,0,9 (31x4x..2)
0,7,x,11,11,x,0,9 (.1x34x.2)