7-String Guitar Chord Chart and Tabs in Drop G#/Ab Tuning

Lao7, La°7, La dim7
Notes: La, Do, Mi♭, Sol♭
1,0,1,2,0,2,0 (1.23.4.)
1,0,4,2,0,2,0 (1.42.3.)
1,0,1,5,0,2,0 (1.24.3.)
1,0,4,5,0,2,0 (1.34.2.)
1,0,4,2,0,5,0 (1.32.4.)
1,0,4,5,0,5,0 (1.23.4.)
x,x,1,2,0,2,0 (xx12.3.)
x,6,4,5,0,5,0 (x412.3.)
x,6,4,2,0,5,0 (x421.3.)
x,6,4,2,0,2,0 (x431.2.)
x,6,4,5,0,2,0 (x423.1.)
x,x,1,5,0,2,0 (xx13.2.)
x,6,7,8,6,8,6 (x123141)
x,x,1,2,0,2,3 (xx12.34)
x,6,4,5,0,8,0 (x312.4.)
x,6,4,8,0,5,0 (x314.2.)
x,6,4,8,0,8,0 (x213.4.)
x,x,1,5,3,2,0 (xx1432.)
x,x,x,8,6,8,0 (xxx213.)
x,x,x,8,9,8,9 (xxx1213)
1,0,1,x,0,2,0 (1.2x.3.)
1,0,4,2,0,x,0 (1.32.x.)
1,0,x,2,0,2,0 (1.x2.3.)
1,x,1,2,0,2,0 (1x23.4.)
1,0,1,2,0,2,x (1.23.4x)
1,0,4,5,0,x,0 (1.23.x.)
1,3,4,2,0,x,0 (1342.x.)
1,3,x,2,0,2,0 (14x2.3.)
1,0,4,x,0,2,0 (1.3x.2.)
1,3,4,5,0,x,0 (1234.x.)
1,3,1,x,0,2,0 (142x.3.)
1,0,4,x,0,5,0 (1.2x.3.)
1,0,4,5,3,x,0 (1.342x.)
1,0,4,2,0,2,x (1.42.3x)
1,0,x,2,0,2,3 (1.x2.34)
1,0,1,x,0,2,3 (1.2x.34)
1,0,x,5,0,2,0 (1.x3.2.)
1,x,4,2,0,2,0 (1x42.3.)
1,3,4,x,0,2,0 (134x.2.)
x,6,4,5,0,x,0 (x312.x.)
x,x,1,x,0,2,0 (xx1x.2.)
1,3,x,5,0,2,0 (13x4.2.)
1,3,4,x,0,5,0 (123x.4.)
1,x,4,5,0,2,0 (1x34.2.)
1,0,1,5,0,2,x (1.24.3x)
1,0,4,x,0,2,3 (1.4x.23)
1,0,4,5,0,2,x (1.34.2x)
1,0,4,5,x,5,0 (1.23x4.)
1,x,4,5,0,5,0 (1x23.4.)
x,6,4,2,0,x,0 (x321.x.)
1,0,4,5,x,2,0 (1.34x2.)
1,x,1,5,0,2,0 (1x24.3.)
1,0,4,5,0,5,x (1.23.4x)
1,0,1,5,x,2,0 (1.24x3.)
1,x,4,2,0,5,0 (1x32.4.)
1,0,4,2,0,x,3 (1.42.x3)
1,0,x,5,3,2,0 (1.x432.)
1,0,4,2,0,5,x (1.32.4x)
x,x,1,2,0,2,x (xx12.3x)
1,0,4,x,0,5,3 (1.3x.42)
1,0,x,5,0,2,3 (1.x4.23)
1,0,4,5,0,x,3 (1.34.x2)
x,6,4,5,6,x,0 (x3124x.)
x,6,4,x,0,5,0 (x31x.2.)
x,6,4,8,0,x,0 (x213.x.)
x,6,4,5,3,x,0 (x4231x.)
x,6,x,5,6,5,6 (x2x1314)
x,6,x,5,6,5,0 (x3x142.)
x,6,7,5,6,5,x (x24131x)
x,6,7,5,6,x,0 (x2413x.)
x,6,x,5,0,2,0 (x3x2.1.)
x,6,x,2,0,2,0 (x3x1.2.)
x,6,4,x,0,2,0 (x32x.1.)
x,6,4,5,0,5,x (x412.3x)
x,6,4,5,x,5,0 (x412x3.)
x,6,7,x,6,8,6 (x12x131)
x,6,7,8,6,8,x (x12314x)
x,6,4,x,3,5,3 (x42x131)
x,6,x,2,6,2,3 (x3x1412)
x,6,4,2,0,2,x (x431.2x)
x,6,x,5,3,2,0 (x4x321.)
x,6,4,5,x,2,0 (x423x1.)
x,6,x,2,3,2,3 (x4x1213)
x,6,x,5,6,2,0 (x3x241.)
x,6,4,2,x,2,3 (x431x12)
x,6,4,2,0,5,x (x421.3x)
x,6,4,x,0,5,6 (x31x.24)
x,6,4,x,0,8,0 (x21x.3.)
x,6,x,8,6,8,0 (x1x324.)
x,6,4,x,0,5,3 (x42x.31)
x,x,1,5,x,2,0 (xx13x2.)
x,x,1,2,x,2,3 (xx12x34)
x,6,7,x,6,8,0 (x13x24.)
x,6,4,2,0,x,6 (x321.x4)
x,6,x,2,0,2,3 (x4x1.23)
x,6,x,2,0,2,6 (x3x1.24)
x,6,4,2,0,x,3 (x431.x2)
x,6,x,5,6,8,0 (x2x134.)
x,6,4,5,x,8,0 (x312x4.)
x,6,4,x,6,8,0 (x21x34.)
x,6,4,8,0,5,x (x314.2x)
x,6,4,8,x,8,0 (x213x4.)
x,6,7,x,6,8,9 (x12x134)
x,6,10,8,6,x,0 (x1432x.)
x,6,x,5,6,5,9 (x2x1314)
x,6,x,5,9,5,9 (x2x1314)
x,6,7,5,x,5,9 (x231x14)
x,6,10,x,6,8,0 (x14x23.)
x,6,7,8,0,x,9 (x123.x4)
x,6,7,x,0,8,9 (x12x.34)
x,6,7,x,0,5,9 (x23x.14)
x,6,x,5,0,5,9 (x3x1.24)
x,6,7,5,0,x,9 (x231.x4)
x,6,x,8,0,5,9 (x2x3.14)
1,0,4,x,0,x,0 (1.2x.x.)
1,3,4,x,0,x,0 (123x.x.)
1,0,x,x,0,2,0 (1.xx.2.)
1,x,1,x,0,2,0 (1x2x.3.)
1,0,x,2,0,2,x (1.x2.3x)
1,0,4,2,0,x,x (1.32.xx)
1,x,x,2,0,2,0 (1xx2.3.)
1,0,1,x,0,2,x (1.2x.3x)
1,x,4,2,0,x,0 (1x32.x.)
1,0,4,5,0,x,x (1.23.xx)
1,3,4,2,x,x,0 (1342xx.)
1,0,4,5,x,x,0 (1.23xx.)
1,3,4,2,0,x,x (1342.xx)
1,x,4,5,0,x,0 (1x23.x.)
1,x,1,2,0,2,x (1x23.4x)
1,3,x,x,0,2,0 (13xx.2.)
1,3,1,2,x,2,x (1412x3x)
x,6,4,x,0,x,0 (x21x.x.)
1,0,4,x,0,2,x (1.3x.2x)
1,3,x,x,3,2,0 (13xx42.)
1,3,4,5,x,x,0 (1234xx.)
1,3,x,2,x,2,0 (14x2x3.)
1,3,x,2,0,2,x (14x2.3x)
1,x,4,x,0,2,0 (1x3x.2.)
1,0,x,x,0,2,3 (1.xx.23)
1,x,1,2,x,2,3 (1x12x34)
1,3,4,x,3,x,0 (124x3x.)
1,3,1,x,x,2,0 (142xx3.)
1,3,4,x,x,2,0 (134xx2.)
1,0,4,5,3,x,x (1.342xx)
1,x,x,2,0,2,3 (1xx2.34)
1,x,4,x,0,5,0 (1x2x.3.)
1,x,x,5,0,2,0 (1xx3.2.)
1,0,x,5,x,2,0 (1.x3x2.)
1,0,4,x,0,x,3 (1.3x.x2)
1,0,x,x,3,2,3 (1.xx324)
1,x,4,5,3,x,0 (1x342x.)
1,0,1,x,x,2,3 (1.2xx34)
1,0,4,x,0,5,x (1.2x.3x)
1,0,x,5,0,2,x (1.x3.2x)
1,x,4,2,0,2,x (1x42.3x)
1,0,x,2,x,2,3 (1.x2x34)
x,6,4,5,x,x,0 (x312xx.)
1,x,x,5,3,2,0 (1xx432.)
1,0,4,5,x,2,x (1.34x2x)
1,x,4,2,0,5,x (1x32.4x)
x,6,x,5,6,x,0 (x2x13x.)
x,6,x,5,6,5,x (x2x131x)
1,0,4,2,x,x,3 (1.42xx3)
1,3,4,x,x,5,0 (123xx4.)
1,x,4,5,x,5,0 (1x23x4.)
1,3,x,5,x,2,0 (13x4x2.)
1,x,4,2,0,x,3 (1x42.x3)
1,0,x,5,3,2,x (1.x432x)
1,0,4,5,x,5,x (1.23x4x)
x,6,4,2,0,x,x (x321.xx)
1,0,4,x,3,x,3 (1.4x2x3)
1,x,1,5,x,2,0 (1x24x3.)
1,x,4,5,0,5,x (1x23.4x)
1,x,4,5,x,2,0 (1x34x2.)
1,0,1,5,x,2,x (1.24x3x)
1,0,4,x,x,2,3 (1.4xx23)
1,3,4,x,0,5,x (123x.4x)
1,0,4,x,x,5,3 (1.3xx42)
x,6,x,x,0,2,0 (x2xx.1.)
1,x,4,x,0,5,3 (1x3x.42)
1,0,4,5,x,x,3 (1.34xx2)
1,0,x,5,x,2,3 (1.x4x23)
x,6,4,x,0,5,x (x31x.2x)
x,6,7,x,6,8,x (x12x13x)
x,6,7,5,6,x,x (x2413xx)
x,6,x,2,0,2,x (x3x1.2x)
x,6,x,5,x,2,0 (x3x2x1.)
x,6,x,2,x,2,3 (x3x1x12)
x,6,4,5,x,5,x (x412x3x)
x,6,x,x,6,8,0 (x1xx23.)
x,6,4,x,x,8,0 (x21xx3.)
x,6,10,x,6,x,0 (x13x2x.)
x,6,x,x,6,5,3 (x3xx421)
x,6,4,x,x,5,3 (x42xx31)
x,6,x,2,6,x,3 (x3x14x2)
x,6,4,2,x,x,3 (x431xx2)
x,6,x,5,x,5,9 (x2x1x13)
x,6,7,x,6,x,3 (x24x3x1)
x,6,7,x,0,x,9 (x12x.x3)
x,6,x,x,0,5,9 (x2xx.13)
x,6,x,x,9,8,9 (x1xx324)
x,6,7,x,x,8,9 (x12xx34)
x,6,7,5,x,x,9 (x231xx4)
x,6,x,5,9,x,9 (x2x13x4)
x,6,10,x,9,x,9 (x14x2x3)
1,0,4,x,0,x,x (1.2x.xx)
1,x,4,x,0,x,0 (1x2x.x.)
1,x,x,x,0,2,0 (1xxx.2.)
1,3,4,x,x,x,0 (123xxx.)
1,0,x,x,0,2,x (1.xx.2x)
1,x,4,2,0,x,x (1x32.xx)
1,x,x,2,0,2,x (1xx2.3x)
1,3,x,x,x,2,0 (13xxx2.)
1,3,4,2,x,x,x (1342xxx)
1,0,4,5,x,x,x (1.23xxx)
1,x,4,5,x,x,0 (1x23xx.)
1,3,x,2,x,2,x (14x2x3x)
1,0,x,x,x,2,3 (1.xxx23)
1,0,4,x,x,x,3 (1.3xxx2)
1,x,x,5,x,2,0 (1xx3x2.)
1,x,4,x,0,5,x (1x2x.3x)
1,0,x,5,x,2,x (1.x3x2x)
1,x,x,2,x,2,3 (1xx2x34)
1,x,4,2,x,x,3 (1x42xx3)
1,x,4,5,x,5,x (1x23x4x)
1,3,4,x,x,5,x (123xx4x)
1,x,4,x,x,5,3 (1x3xx42)