Mandolin Chord Chart and Tabs in Modal D Tuning

Sol7/6sus2, Sol7,6sus2
Notes: Sol, Si, Ré, Mi, Fa, La
8,10,0,9,7,0,0,0 (24.31...)
7,10,0,9,8,0,0,0 (14.32...)
0,10,0,9,8,7,0,0 (.4.321..)
8,10,0,9,0,7,0,0 (24.3.1..)
0,10,0,9,7,8,0,0 (.4.312..)
7,10,0,9,0,8,0,0 (14.3.2..)
x,x,2,5,0,2,3,0 (xx14.23.)
x,x,3,5,0,2,2,0 (xx34.12.)
x,x,2,5,2,0,3,0 (xx142.3.)
x,x,3,5,2,0,2,0 (xx341.2.)
x,x,2,5,2,0,0,3 (xx142..3)
x,x,0,5,2,0,3,2 (xx.41.32)
x,x,3,5,0,2,0,2 (xx34.1.2)
x,x,2,5,0,2,0,3 (xx14.2.3)
x,x,0,5,0,2,2,3 (xx.4.123)
x,x,0,5,2,0,2,3 (xx.41.23)
x,x,3,5,2,0,0,2 (xx341..2)
x,x,0,5,0,2,3,2 (xx.4.132)
0,x,2,5,2,0,3,0 (.x142.3.)
0,x,2,5,0,2,3,0 (.x14.23.)
0,x,3,5,2,0,2,0 (.x341.2.)
2,x,2,5,0,0,3,0 (1x24..3.)
2,x,3,5,0,0,2,0 (1x34..2.)
0,x,3,5,0,2,2,0 (.x34.12.)
7,x,9,5,8,0,0,0 (2x413...)
8,x,9,5,7,0,0,0 (3x412...)
0,x,3,5,2,0,0,2 (.x341..2)
0,x,3,5,0,2,0,2 (.x34.1.2)
2,x,0,5,0,0,3,2 (1x.4..32)
0,x,0,5,2,0,3,2 (.x.41.32)
2,x,3,5,0,0,0,2 (1x34...2)
2,x,2,5,0,0,0,3 (1x24...3)
0,x,0,5,0,2,2,3 (.x.4.123)
0,x,2,5,2,0,0,3 (.x142..3)
0,x,2,5,0,2,0,3 (.x14.2.3)
2,x,0,5,0,0,2,3 (1x.4..23)
0,x,0,5,2,0,2,3 (.x.41.23)
0,x,0,5,0,2,3,2 (.x.4.132)
8,10,0,9,7,0,x,0 (24.31.x.)
8,10,9,x,7,0,0,0 (243x1...)
7,10,0,9,8,0,0,x (14.32..x)
7,10,x,9,8,0,0,0 (14x32...)
7,10,9,x,8,0,0,0 (143x2...)
7,10,0,9,8,0,x,0 (14.32.x.)
8,10,0,9,7,0,0,x (24.31..x)
8,10,x,9,7,0,0,0 (24x31...)
7,x,9,5,0,8,0,0 (2x41.3..)
0,x,9,5,7,8,0,0 (.x4123..)
0,x,9,5,8,7,0,0 (.x4132..)
8,x,9,5,0,7,0,0 (3x41.2..)
0,10,x,9,7,8,0,0 (.4x312..)
7,10,9,x,0,8,0,0 (143x.2..)
7,10,0,9,0,8,x,0 (14.3.2x.)
0,10,9,x,7,8,0,0 (.43x12..)
0,10,x,9,8,7,0,0 (.4x321..)
7,10,x,9,0,8,0,0 (14x3.2..)
0,10,0,9,7,8,x,0 (.4.312x.)
8,10,0,9,0,7,0,x (24.3.1.x)
8,10,0,9,0,7,x,0 (24.3.1x.)
0,10,9,x,8,7,0,0 (.43x21..)
0,10,0,9,8,7,0,x (.4.321.x)
0,10,0,9,7,8,0,x (.4.312.x)
7,10,0,9,0,8,0,x (14.3.2.x)
8,10,9,x,0,7,0,0 (243x.1..)
0,10,0,9,8,7,x,0 (.4.321x.)
8,10,x,9,0,7,0,0 (24x3.1..)
0,x,0,5,7,8,9,0 (.x.1234.)
8,x,0,5,7,0,9,0 (3x.12.4.)
0,x,0,5,8,7,9,0 (.x.1324.)
8,x,0,5,0,7,9,0 (3x.1.24.)
7,x,0,5,8,0,9,0 (2x.13.4.)
7,x,0,5,0,8,9,0 (2x.1.34.)
8,10,0,x,0,7,9,0 (24.x.13.)
8,10,0,x,7,0,9,0 (24.x1.3.)
0,10,0,x,7,8,9,0 (.4.x123.)
0,10,0,x,8,7,9,0 (.4.x213.)
7,10,0,x,8,0,9,0 (14.x2.3.)
7,10,0,x,0,8,9,0 (14.x.23.)
8,x,0,5,7,0,0,9 (3x.12..4)
0,x,0,5,7,8,0,9 (.x.123.4)
7,x,0,5,0,8,0,9 (2x.1.3.4)
0,x,0,5,8,7,0,9 (.x.132.4)
8,x,0,5,0,7,0,9 (3x.1.2.4)
7,x,0,5,8,0,0,9 (2x.13..4)
7,10,0,x,8,0,0,9 (14.x2..3)
8,10,0,x,7,0,0,9 (24.x1..3)
8,10,0,x,0,7,0,9 (24.x.1.3)
0,10,0,x,8,7,0,9 (.4.x21.3)
7,10,0,x,0,8,0,9 (14.x.2.3)
0,10,0,x,7,8,0,9 (.4.x12.3)
2,x,2,5,x,0,3,0 (1x24x.3.)
0,x,3,5,2,x,2,0 (.x341x2.)
0,x,2,5,2,x,3,0 (.x142x3.)
2,x,2,5,0,x,3,0 (1x24.x3.)
0,x,3,5,x,2,2,0 (.x34x12.)
2,x,3,5,x,0,2,0 (1x34x.2.)
2,x,3,5,0,x,2,0 (1x34.x2.)
0,x,2,5,x,2,3,0 (.x14x23.)
0,x,2,5,2,x,0,3 (.x142x.3)
2,x,2,5,x,0,0,3 (1x24x..3)
7,x,9,5,8,0,x,0 (2x413.x.)
8,x,9,5,7,0,0,x (3x412..x)
8,x,9,5,7,0,x,0 (3x412.x.)
2,x,2,5,0,x,0,3 (1x24.x.3)
0,x,0,5,x,2,2,3 (.x.4x123)
7,x,9,5,8,0,0,x (2x413..x)
2,x,0,5,x,0,2,3 (1x.4x.23)
0,x,0,5,2,x,2,3 (.x.41x23)
2,x,0,5,0,x,2,3 (1x.4.x23)
2,x,3,5,0,x,0,2 (1x34.x.2)
0,x,3,5,2,x,0,2 (.x341x.2)
2,x,3,5,x,0,0,2 (1x34x..2)
0,x,0,5,x,2,3,2 (.x.4x132)
0,x,2,5,x,2,0,3 (.x14x2.3)
0,x,3,5,x,2,0,2 (.x34x1.2)
2,x,0,5,x,0,3,2 (1x.4x.32)
2,x,0,5,0,x,3,2 (1x.4.x32)
0,x,0,5,2,x,3,2 (.x.41x32)
8,10,9,x,7,0,0,x (243x1..x)
8,10,0,9,7,0,x,x (24.31.xx)
7,10,0,9,8,0,x,x (14.32.xx)
8,10,x,9,7,0,0,x (24x31..x)
8,10,9,x,7,0,x,0 (243x1.x.)
7,10,9,x,8,0,0,x (143x2..x)
7,10,9,x,8,0,x,0 (143x2.x.)
7,10,x,9,8,0,0,x (14x32..x)
7,10,x,9,8,0,x,0 (14x32.x.)
8,10,x,9,7,0,x,0 (24x31.x.)
0,x,9,5,7,8,0,x (.x4123.x)
0,x,9,5,7,8,x,0 (.x4123x.)
7,x,9,5,0,8,0,x (2x41.3.x)
8,x,9,5,0,7,0,x (3x41.2.x)
7,x,9,5,0,8,x,0 (2x41.3x.)
8,x,9,5,0,7,x,0 (3x41.2x.)
0,x,9,5,8,7,x,0 (.x4132x.)
0,x,9,5,8,7,0,x (.x4132.x)
0,10,9,x,8,7,x,0 (.43x21x.)
8,10,x,9,0,7,0,x (24x3.1.x)
8,10,9,x,0,7,x,0 (243x.1x.)
0,10,x,9,7,8,0,x (.4x312.x)
0,10,9,x,7,8,x,0 (.43x12x.)
0,10,0,9,8,7,x,x (.4.321xx)
8,10,x,9,0,7,x,0 (24x3.1x.)
7,10,0,9,0,8,x,x (14.3.2xx)
7,10,x,9,0,8,x,0 (14x3.2x.)
7,10,x,9,0,8,0,x (14x3.2.x)
0,10,0,9,7,8,x,x (.4.312xx)
8,10,9,x,0,7,0,x (243x.1.x)
7,10,9,x,0,8,0,x (143x.2.x)
0,10,x,9,8,7,0,x (.4x321.x)
0,10,x,9,7,8,x,0 (.4x312x.)
0,10,x,9,8,7,x,0 (.4x321x.)
7,10,9,x,0,8,x,0 (143x.2x.)
8,10,0,9,0,7,x,x (24.3.1xx)
0,10,9,x,8,7,0,x (.43x21.x)
0,10,9,x,7,8,0,x (.43x12.x)
8,x,0,5,7,0,9,x (3x.12.4x)
0,x,x,5,7,8,9,0 (.xx1234.)
8,x,0,5,0,7,9,x (3x.1.24x)
7,x,x,5,0,8,9,0 (2xx1.34.)
0,x,0,5,8,7,9,x (.x.1324x)
7,x,0,5,8,0,9,x (2x.13.4x)
8,x,x,5,7,0,9,0 (3xx12.4.)
7,x,x,5,8,0,9,0 (2xx13.4.)
0,x,0,5,7,8,9,x (.x.1234x)
8,x,x,5,0,7,9,0 (3xx1.24.)
7,x,0,5,0,8,9,x (2x.1.34x)
0,x,x,5,8,7,9,0 (.xx1324.)
8,10,x,x,7,0,9,0 (24xx1.3.)
8,10,0,x,7,0,9,x (24.x1.3x)
7,10,x,x,8,0,9,0 (14xx2.3.)
7,10,0,x,8,0,9,x (14.x2.3x)
0,10,0,x,8,7,9,x (.4.x213x)
8,10,x,x,0,7,9,0 (24xx.13.)
0,10,0,x,7,8,9,x (.4.x123x)
7,10,x,x,0,8,9,0 (14xx.23.)
8,10,0,x,0,7,9,x (24.x.13x)
0,10,x,x,8,7,9,0 (.4xx213.)
7,10,0,x,0,8,9,x (14.x.23x)
0,10,x,x,7,8,9,0 (.4xx123.)
8,x,0,5,0,7,x,9 (3x.1.2x4)
0,x,0,5,7,8,x,9 (.x.123x4)
7,x,0,5,0,8,x,9 (2x.1.3x4)
7,x,x,5,8,0,0,9 (2xx13..4)
0,x,0,5,8,7,x,9 (.x.132x4)
8,x,x,5,0,7,0,9 (3xx1.2.4)
8,x,x,5,7,0,0,9 (3xx12..4)
0,x,x,5,8,7,0,9 (.xx132.4)
7,x,0,5,8,0,x,9 (2x.13.x4)
7,x,x,5,0,8,0,9 (2xx1.3.4)
8,x,0,5,7,0,x,9 (3x.12.x4)
0,x,x,5,7,8,0,9 (.xx123.4)
0,10,0,x,7,8,x,9 (.4.x12x3)
8,10,0,x,0,7,x,9 (24.x.1x3)
7,10,x,x,8,0,0,9 (14xx2..3)
8,10,x,x,0,7,0,9 (24xx.1.3)
7,10,x,x,0,8,0,9 (14xx.2.3)
7,10,0,x,8,0,x,9 (14.x2.x3)
0,10,0,x,8,7,x,9 (.4.x21x3)
7,10,0,x,0,8,x,9 (14.x.2x3)
0,10,x,x,7,8,0,9 (.4xx12.3)
8,10,0,x,7,0,x,9 (24.x1.x3)
8,10,x,x,7,0,0,9 (24xx1..3)
0,10,x,x,8,7,0,9 (.4xx21.3)