Mandolin Chord Chart and Tabs in Modal D Tuning

RéM7b9, RéMa7b9, RéΔ7b9, RéΔb9
Notes: Ré, Fa♯, La, Do♯, Mi♭
x,x,1,0,4,0,4,0 (xx1.2.3.)
x,x,1,0,0,4,4,0 (xx1..23.)
x,x,4,0,0,4,1,0 (xx2..31.)
x,x,4,0,4,0,1,0 (xx2.3.1.)
x,x,0,0,0,4,4,1 (xx...231)
x,x,0,0,0,4,1,4 (xx...213)
x,x,0,0,4,0,1,4 (xx..2.13)
x,x,1,0,0,4,0,4 (xx1..2.3)
x,x,1,0,4,0,0,4 (xx1.2..3)
x,x,4,0,0,4,0,1 (xx2..3.1)
x,x,4,0,4,0,0,1 (xx2.3..1)
x,x,0,0,4,0,4,1 (xx..2.31)
x,6,7,0,4,0,4,0 (x34.1.2.)
x,6,7,0,0,4,4,0 (x34..12.)
x,6,4,0,0,4,7,0 (x31..24.)
x,6,4,0,4,0,7,0 (x31.2.4.)
x,x,7,0,6,4,4,0 (xx4.312.)
x,x,4,0,6,4,7,0 (xx1.324.)
x,x,4,0,4,6,7,0 (xx1.234.)
x,x,7,0,4,6,4,0 (xx4.132.)
x,6,4,0,0,4,0,7 (x31..2.4)
x,6,0,0,4,0,7,4 (x3..1.42)
x,6,7,0,0,4,0,4 (x34..1.2)
x,6,0,0,0,4,7,4 (x3...142)
x,6,7,0,4,0,0,4 (x34.1..2)
x,6,0,0,0,4,4,7 (x3...124)
x,6,4,0,4,0,0,7 (x31.2..4)
x,6,0,0,4,0,4,7 (x3..1.24)
x,x,0,0,6,4,4,7 (xx..3124)
x,x,4,0,6,4,0,7 (xx1.32.4)
x,x,0,0,4,6,4,7 (xx..1324)
x,x,0,0,4,6,7,4 (xx..1342)
x,x,0,0,6,4,7,4 (xx..3142)
x,x,4,0,4,6,0,7 (xx1.23.4)
x,x,7,0,4,6,0,4 (xx4.13.2)
x,x,7,0,6,4,0,4 (xx4.31.2)
6,x,4,0,0,4,7,0 (3x1..24.)
0,x,7,0,4,6,4,0 (.x4.132.)
0,x,7,0,6,4,4,0 (.x4.312.)
0,x,4,0,6,4,7,0 (.x1.324.)
4,x,4,0,0,6,7,0 (1x2..34.)
6,x,7,0,0,4,4,0 (3x4..12.)
0,6,4,0,4,x,7,0 (.31.2x4.)
4,6,4,0,0,x,7,0 (132..x4.)
4,6,4,0,x,0,7,0 (132.x.4.)
0,6,7,0,x,4,4,0 (.34.x12.)
6,x,4,0,4,0,7,0 (3x1.2.4.)
4,x,7,0,0,6,4,0 (1x4..32.)
4,x,7,0,6,0,4,0 (1x4.3.2.)
6,x,7,0,4,0,4,0 (3x4.1.2.)
4,6,7,0,x,0,4,0 (134.x.2.)
0,6,7,0,4,x,4,0 (.34.1x2.)
4,6,7,0,0,x,4,0 (134..x2.)
4,x,4,0,6,0,7,0 (1x2.3.4.)
0,6,4,0,x,4,7,0 (.31.x24.)
0,x,4,0,4,6,7,0 (.x1.234.)
x,5,1,x,0,4,4,0 (x41x.23.)
x,5,4,x,0,4,1,0 (x42x.31.)
x,5,4,x,4,0,1,0 (x42x3.1.)
x,5,1,x,4,0,4,0 (x41x2.3.)
0,6,7,0,4,x,0,4 (.34.1x.2)
6,x,4,0,4,0,0,7 (3x1.2..4)
4,6,4,0,x,0,0,7 (132.x..4)
0,6,4,0,4,x,0,7 (.31.2x.4)
4,6,4,0,0,x,0,7 (132..x.4)
0,x,0,0,4,6,7,4 (.x..1342)
6,x,4,0,0,4,0,7 (3x1..2.4)
0,6,0,0,4,x,4,7 (.3..1x24)
4,x,0,0,0,6,7,4 (1x...342)
0,x,0,0,6,4,7,4 (.x..3142)
4,6,0,0,0,x,4,7 (13...x24)
0,x,4,0,4,6,0,7 (.x1.23.4)
0,x,0,0,6,4,4,7 (.x..3124)
6,x,0,0,0,4,7,4 (3x...142)
0,6,0,0,x,4,7,4 (.3..x142)
4,x,0,0,6,0,7,4 (1x..3.42)
0,6,4,0,x,4,0,7 (.31.x2.4)
6,x,0,0,4,0,7,4 (3x..1.42)
4,6,0,0,x,0,7,4 (13..x.42)
0,6,0,0,x,4,4,7 (.3..x124)
0,6,0,0,4,x,7,4 (.3..1x42)
4,6,0,0,0,x,7,4 (13...x42)
4,x,0,0,6,0,4,7 (1x..3.24)
0,x,0,0,4,6,4,7 (.x..1324)
6,x,0,0,0,4,4,7 (3x...124)
0,x,7,0,4,6,0,4 (.x4.13.2)
4,6,7,0,0,x,0,4 (134..x.2)
6,x,0,0,4,0,4,7 (3x..1.24)
4,x,7,0,0,6,0,4 (1x4..3.2)
0,x,7,0,6,4,0,4 (.x4.31.2)
4,x,4,0,6,0,0,7 (1x2.3..4)
4,6,0,0,x,0,4,7 (13..x.24)
6,x,7,0,0,4,0,4 (3x4..1.2)
4,x,4,0,0,6,0,7 (1x2..3.4)
4,6,7,0,x,0,0,4 (134.x..2)
0,6,7,0,x,4,0,4 (.34.x1.2)
0,x,4,0,6,4,0,7 (.x1.32.4)
6,x,7,0,4,0,0,4 (3x4.1..2)
4,x,0,0,0,6,4,7 (1x...324)
4,x,7,0,6,0,0,4 (1x4.3..2)
x,5,4,x,4,0,0,1 (x42x3..1)
x,5,0,x,4,0,1,4 (x4.x2.13)
x,5,0,x,0,4,1,4 (x4.x.213)
x,5,0,x,0,4,4,1 (x4.x.231)
x,5,0,x,4,0,4,1 (x4.x2.31)
x,5,1,x,0,4,0,4 (x41x.2.3)
x,5,4,x,0,4,0,1 (x42x.3.1)
x,5,1,x,4,0,0,4 (x41x2..3)
4,x,4,0,0,x,1,0 (2x3..x1.)
0,x,4,0,4,x,1,0 (.x2.3x1.)
0,x,1,0,x,4,4,0 (.x1.x23.)
4,x,1,0,x,0,4,0 (2x1.x.3.)
0,x,1,0,4,x,4,0 (.x1.2x3.)
4,x,1,0,0,x,4,0 (2x1..x3.)
0,x,4,0,x,4,1,0 (.x2.x31.)
4,x,4,0,x,0,1,0 (2x3.x.1.)
4,x,0,0,0,x,1,4 (2x...x13)
4,x,0,0,0,x,4,1 (2x...x31)
0,x,0,0,4,x,1,4 (.x..2x13)
0,x,4,0,x,4,0,1 (.x2.x3.1)
0,x,1,0,x,4,0,4 (.x1.x2.3)
4,x,0,0,x,0,1,4 (2x..x.13)
4,x,4,0,x,0,0,1 (2x3.x..1)
4,x,1,0,x,0,0,4 (2x1.x..3)
4,x,4,0,0,x,0,1 (2x3..x.1)
0,x,0,0,x,4,1,4 (.x..x213)
0,x,4,0,4,x,0,1 (.x2.3x.1)
0,x,1,0,4,x,0,4 (.x1.2x.3)
0,x,0,0,x,4,4,1 (.x..x231)
4,x,1,0,0,x,0,4 (2x1..x.3)
4,x,0,0,x,0,4,1 (2x..x.31)
0,x,0,0,4,x,4,1 (.x..2x31)
4,5,4,x,0,x,1,0 (243x.x1.)
0,5,1,x,x,4,4,0 (.41xx23.)
4,x,4,0,x,6,7,0 (1x2.x34.)
4,5,1,x,x,0,4,0 (241xx.3.)
4,x,7,0,6,x,4,0 (1x4.3x2.)
6,x,7,0,4,x,4,0 (3x4.1x2.)
6,x,4,0,x,4,7,0 (3x1.x24.)
0,5,1,x,4,x,4,0 (.41x2x3.)
4,x,4,0,6,x,7,0 (1x2.3x4.)
4,5,1,x,0,x,4,0 (241x.x3.)
6,x,4,0,4,x,7,0 (3x1.2x4.)
0,5,4,x,x,4,1,0 (.42xx31.)
4,x,7,0,x,6,4,0 (1x4.x32.)
4,5,4,x,x,0,1,0 (243xx.1.)
6,x,7,0,x,4,4,0 (3x4.x12.)
0,5,4,x,4,x,1,0 (.42x3x1.)
0,5,4,x,4,x,0,1 (.42x3x.1)
4,5,1,x,x,0,0,4 (241xx..3)
4,5,4,x,0,x,0,1 (243x.x.1)
4,5,0,x,0,x,1,4 (24.x.x13)
6,x,4,0,x,4,0,7 (3x1.x2.4)
6,x,0,0,4,x,7,4 (3x..1x42)
0,5,0,x,x,4,4,1 (.4.xx231)
4,x,0,0,6,x,7,4 (1x..3x42)
4,x,7,0,6,x,0,4 (1x4.3x.2)
0,5,0,x,4,x,1,4 (.4.x2x13)
4,x,4,0,x,6,0,7 (1x2.x3.4)
4,5,0,x,x,0,4,1 (24.xx.31)
6,x,7,0,x,4,0,4 (3x4.x1.2)
6,x,0,0,x,4,7,4 (3x..x142)
0,5,0,x,4,x,4,1 (.4.x2x31)
6,x,0,0,4,x,4,7 (3x..1x24)
4,5,0,x,x,0,1,4 (24.xx.13)
4,x,0,0,6,x,4,7 (1x..3x24)
4,5,0,x,0,x,4,1 (24.x.x31)
6,x,7,0,4,x,0,4 (3x4.1x.2)
4,x,7,0,x,6,0,4 (1x4.x3.2)
4,5,1,x,0,x,0,4 (241x.x.3)
6,x,0,0,x,4,4,7 (3x..x124)
0,5,4,x,x,4,0,1 (.42xx3.1)
0,5,0,x,x,4,1,4 (.4.xx213)
0,5,1,x,x,4,0,4 (.41xx2.3)
4,5,4,x,x,0,0,1 (243xx..1)
6,x,4,0,4,x,0,7 (3x1.2x.4)
4,x,0,0,x,6,4,7 (1x..x324)
0,5,1,x,4,x,0,4 (.41x2x.3)
4,x,4,0,6,x,0,7 (1x2.3x.4)
4,x,0,0,x,6,7,4 (1x..x342)