Mandolin Chord Chart and Tabs in Modal D Tuning

Mi7susb13, Mi7sus°13
Notes: Mi, La, Si, Ré, Do
x,7,10,9,7,0,0,x (x1432..x)
x,7,9,10,7,0,0,x (x1342..x)
x,7,9,10,7,0,x,0 (x1342.x.)
x,7,10,9,7,0,x,0 (x1432.x.)
x,7,9,10,0,7,x,0 (x134.2x.)
x,7,10,9,0,7,x,0 (x143.2x.)
x,7,10,9,0,7,0,x (x143.2.x)
x,7,9,10,0,7,0,x (x134.2.x)
x,7,0,9,7,0,10,x (x1.32.4x)
x,7,9,x,0,7,10,0 (x13x.24.)
x,7,10,x,0,7,9,0 (x14x.23.)
x,7,x,10,0,7,9,0 (x1x4.23.)
x,7,x,9,0,7,10,0 (x1x3.24.)
x,7,x,10,7,0,9,0 (x1x42.3.)
x,7,10,x,7,0,9,0 (x14x2.3.)
x,7,9,x,7,0,10,0 (x13x2.4.)
x,7,x,9,7,0,10,0 (x1x32.4.)
x,7,0,9,0,7,10,x (x1.3.24x)
x,7,0,10,0,7,9,x (x1.4.23x)
x,7,0,10,7,0,9,x (x1.42.3x)
x,7,x,10,7,0,0,9 (x1x42..3)
x,7,0,x,0,7,9,10 (x1.x.234)
x,7,0,9,7,0,x,10 (x1.32.x4)
x,7,x,9,0,7,0,10 (x1x3.2.4)
x,7,0,x,0,7,10,9 (x1.x.243)
x,7,x,9,7,0,0,10 (x1x32..4)
x,7,0,x,7,0,10,9 (x1.x2.43)
x,7,x,10,0,7,0,9 (x1x4.2.3)
x,7,10,x,0,7,0,9 (x14x.2.3)
x,7,0,x,7,0,9,10 (x1.x2.34)
x,7,0,9,0,7,x,10 (x1.3.2x4)
x,7,0,10,7,0,x,9 (x1.42.x3)
x,7,10,x,7,0,0,9 (x14x2..3)
x,7,0,10,0,7,x,9 (x1.4.2x3)
x,7,9,x,7,0,0,10 (x13x2..4)
x,7,9,x,0,7,0,10 (x13x.2.4)
2,x,2,2,3,0,x,0 (1x234.x.)
3,x,2,2,2,0,x,0 (4x123.x.)
2,x,2,2,3,0,0,x (1x234..x)
3,x,2,2,2,0,0,x (4x123..x)
0,x,2,2,3,2,x,0 (.x1243x.)
2,x,2,2,0,3,x,0 (1x23.4x.)
0,x,2,2,2,3,x,0 (.x1234x.)
3,x,2,2,0,2,0,x (4x12.3.x)
0,x,2,2,3,2,0,x (.x1243.x)
3,x,2,2,0,2,x,0 (4x12.3x.)
0,x,2,2,2,3,0,x (.x1234.x)
2,x,2,2,0,3,0,x (1x23.4.x)
3,x,0,2,2,0,2,x (4x.12.3x)
2,x,x,2,3,0,2,0 (1xx24.3.)
0,x,x,2,3,2,2,0 (.xx1423.)
2,x,x,2,0,3,2,0 (1xx2.43.)
0,x,x,2,2,3,2,0 (.xx1243.)
3,x,x,2,2,0,2,0 (4xx12.3.)
3,x,x,2,0,2,2,0 (4xx1.23.)
2,x,0,2,3,0,2,x (1x.24.3x)
3,x,0,2,0,2,2,x (4x.1.23x)
0,x,0,2,3,2,2,x (.x.1423x)
2,x,0,2,0,3,2,x (1x.2.43x)
0,x,0,2,2,3,2,x (.x.1243x)
7,7,10,9,x,0,0,x (1243x..x)
7,7,10,9,x,0,x,0 (1243x.x.)
7,7,9,10,x,0,x,0 (1234x.x.)
7,7,9,10,0,x,0,x (1234.x.x)
7,7,9,10,x,0,0,x (1234x..x)
7,7,10,9,0,x,x,0 (1243.xx.)
7,7,9,10,0,x,x,0 (1234.xx.)
7,7,10,9,0,x,0,x (1243.x.x)
0,x,0,2,2,3,x,2 (.x.124x3)
3,x,x,2,0,2,0,2 (4xx1.2.3)
2,x,0,2,3,0,x,2 (1x.24.x3)
3,x,0,2,0,2,x,2 (4x.1.2x3)
0,x,0,2,3,2,x,2 (.x.142x3)
2,x,0,2,0,3,x,2 (1x.2.4x3)
3,x,0,2,2,0,x,2 (4x.12.x3)
3,x,x,2,2,0,0,2 (4xx12..3)
2,x,x,2,3,0,0,2 (1xx24..3)
0,x,x,2,3,2,0,2 (.xx142.3)
2,x,x,2,0,3,0,2 (1xx2.4.3)
0,x,x,2,2,3,0,2 (.xx124.3)
0,7,9,10,7,x,x,0 (.1342xx.)
0,7,10,9,7,x,x,0 (.1432xx.)
0,7,10,9,7,x,0,x (.1432x.x)
0,7,9,10,7,x,0,x (.1342x.x)
0,7,10,9,x,7,0,x (.143x2.x)
0,7,10,9,x,7,x,0 (.143x2x.)
0,7,9,10,x,7,0,x (.134x2.x)
0,7,9,10,x,7,x,0 (.134x2x.)
0,7,10,x,x,7,9,0 (.14xx23.)
0,7,x,9,7,x,10,0 (.1x32x4.)
7,7,9,x,x,0,10,0 (123xx.4.)
7,7,x,9,x,0,10,0 (12x3x.4.)
0,7,10,x,7,x,9,0 (.14x2x3.)
7,7,x,10,0,x,9,0 (12x4.x3.)
0,7,9,x,x,7,10,0 (.13xx24.)
0,7,x,9,x,7,10,0 (.1x3x24.)
7,7,10,x,0,x,9,0 (124x.x3.)
7,7,9,x,0,x,10,0 (123x.x4.)
7,7,x,10,x,0,9,0 (12x4x.3.)
7,7,10,x,x,0,9,0 (124xx.3.)
0,7,x,10,7,x,9,0 (.1x42x3.)
7,7,x,9,0,x,10,0 (12x3.x4.)
7,7,0,10,0,x,9,x (12.4.x3x)
0,7,0,10,7,x,9,x (.1.42x3x)
7,7,0,10,x,0,9,x (12.4x.3x)
0,7,0,10,x,7,9,x (.1.4x23x)
0,7,x,10,x,7,9,0 (.1x4x23.)
7,7,0,9,0,x,10,x (12.3.x4x)
0,7,9,x,7,x,10,0 (.13x2x4.)
0,7,0,9,x,7,10,x (.1.3x24x)
0,7,0,9,7,x,10,x (.1.32x4x)
7,7,0,9,x,0,10,x (12.3x.4x)
0,7,9,x,7,x,0,10 (.13x2x.4)
0,7,x,10,x,7,0,9 (.1x4x2.3)
7,7,0,x,0,x,10,9 (12.x.x43)
0,7,0,x,7,x,10,9 (.1.x2x43)
7,7,0,x,x,0,10,9 (12.xx.43)
7,7,x,10,x,0,0,9 (12x4x..3)
0,7,0,x,x,7,10,9 (.1.xx243)
0,7,x,10,7,x,0,9 (.1x42x.3)
7,7,0,9,0,x,x,10 (12.3.xx4)
0,7,0,9,7,x,x,10 (.1.32xx4)
7,7,0,9,x,0,x,10 (12.3x.x4)
0,7,10,x,7,x,0,9 (.14x2x.3)
0,7,0,9,x,7,x,10 (.1.3x2x4)
7,7,x,10,0,x,0,9 (12x4.x.3)
7,7,9,x,0,x,0,10 (123x.x.4)
7,7,x,9,0,x,0,10 (12x3.x.4)
0,7,10,x,x,7,0,9 (.14xx2.3)
0,7,x,9,7,x,0,10 (.1x32x.4)
7,7,9,x,x,0,0,10 (123xx..4)
7,7,x,9,x,0,0,10 (12x3x..4)
7,7,10,x,0,x,0,9 (124x.x.3)
0,7,0,10,x,7,x,9 (.1.4x2x3)
0,7,9,x,x,7,0,10 (.13xx2.4)
0,7,x,9,x,7,0,10 (.1x3x2.4)
7,7,0,10,x,0,x,9 (12.4x.x3)
0,7,0,10,7,x,x,9 (.1.42xx3)
7,7,0,x,0,x,9,10 (12.x.x34)
0,7,0,x,7,x,9,10 (.1.x2x34)
7,7,0,x,x,0,9,10 (12.xx.34)
7,7,0,10,0,x,x,9 (12.4.xx3)
0,7,0,x,x,7,9,10 (.1.xx234)
7,7,10,x,x,0,0,9 (124xx..3)