Mandolin Chord Chart and Tabs in Irish Tuning

Ре+M7b9, Ре+Δb9, РеM7♯5b9, РеM7+5b9, РеΔ♯5b9, РеΔ+5b9
Notes: Ре, Фа♯, Ля♯, До♯, Ми♭
x,x,1,0,1,4,4,0 (xx1.234.)
x,x,4,0,4,1,1,0 (xx3.412.)
x,x,4,0,1,4,1,0 (xx3.142.)
x,x,1,0,4,1,4,0 (xx1.324.)
x,x,1,0,1,4,0,4 (xx1.23.4)
x,x,0,0,1,4,1,4 (xx..1324)
x,x,0,0,1,4,4,1 (xx..1342)
x,x,0,0,4,1,1,4 (xx..3124)
x,x,0,0,4,1,4,1 (xx..3142)
x,x,1,0,4,1,0,4 (xx1.32.4)
x,x,4,0,1,4,0,1 (xx3.14.2)
x,x,4,0,4,1,0,1 (xx3.41.2)
x,x,8,0,6,4,4,0 (xx4.312.)
x,x,8,0,4,6,4,0 (xx4.132.)
x,x,4,0,4,6,8,0 (xx1.234.)
x,x,4,0,6,4,8,0 (xx1.324.)
x,x,0,0,4,6,4,8 (xx..1324)
x,x,4,0,6,4,0,8 (xx1.32.4)
x,x,4,0,4,6,0,8 (xx1.23.4)
x,x,0,0,6,4,8,4 (xx..3142)
x,x,0,0,6,4,4,8 (xx..3124)
x,x,8,0,6,4,0,4 (xx4.31.2)
x,x,0,0,4,6,8,4 (xx..1342)
x,x,8,0,4,6,0,4 (xx4.13.2)
x,8,4,0,x,4,8,0 (x31.x24.)
x,8,8,0,x,4,4,0 (x34.x12.)
x,8,4,0,4,x,8,0 (x31.2x4.)
x,8,8,0,4,x,4,0 (x34.1x2.)
x,8,8,0,x,9,11,0 (x12.x34.)
x,8,8,0,9,x,11,0 (x12.3x4.)
x,8,11,0,x,9,8,0 (x14.x32.)
x,8,11,0,9,x,8,0 (x14.3x2.)
x,8,4,0,x,4,0,8 (x31.x2.4)
x,8,8,0,4,x,0,4 (x34.1x.2)
x,8,4,0,4,x,0,8 (x31.2x.4)
x,8,0,0,x,4,8,4 (x3..x142)
x,8,0,0,4,x,4,8 (x3..1x24)
x,8,0,0,4,x,8,4 (x3..1x42)
x,8,0,0,x,4,4,8 (x3..x124)
x,8,8,0,x,4,0,4 (x34.x1.2)
x,8,11,0,9,x,0,8 (x14.3x.2)
x,8,0,0,x,9,8,11 (x1..x324)
x,8,11,0,x,9,0,8 (x14.x3.2)
x,8,8,0,x,9,0,11 (x12.x3.4)
x,8,8,0,9,x,0,11 (x12.3x.4)
x,8,0,0,x,9,11,8 (x1..x342)
x,8,0,0,9,x,8,11 (x1..3x24)
x,8,0,0,9,x,11,8 (x1..3x42)
3,x,4,0,x,4,1,0 (2x3.x41.)
3,x,1,0,4,x,4,0 (2x1.3x4.)
3,x,1,0,x,4,4,0 (2x1.x34.)
3,x,4,0,4,x,1,0 (2x3.4x1.)
3,x,1,0,4,x,0,4 (2x1.3x.4)
3,x,4,0,x,4,0,1 (2x3.x4.1)
3,x,0,0,x,4,1,4 (2x..x314)
3,x,0,0,4,x,4,1 (2x..3x41)
3,x,4,0,4,x,0,1 (2x3.4x.1)
3,x,1,0,x,4,0,4 (2x1.x3.4)
3,x,0,0,x,4,4,1 (2x..x341)
3,x,0,0,4,x,1,4 (2x..3x14)
6,x,8,0,6,x,4,0 (2x4.3x1.)
6,x,8,0,x,6,4,0 (2x4.x31.)
8,x,4,0,4,x,8,0 (3x1.2x4.)
6,x,4,0,6,x,8,0 (2x1.3x4.)
6,x,4,0,x,6,8,0 (2x1.x34.)
8,x,8,0,4,x,4,0 (3x4.1x2.)
8,x,8,0,x,4,4,0 (3x4.x12.)
8,x,4,0,x,4,8,0 (3x1.x24.)
8,x,8,0,x,9,11,0 (1x2.x34.)
8,x,11,0,9,x,8,0 (1x4.3x2.)
8,x,11,0,x,9,8,0 (1x4.x32.)
8,x,8,0,9,x,11,0 (1x2.3x4.)
6,x,0,0,6,x,4,8 (2x..3x14)
x,8,8,0,x,9,11,x (x12.x34x)
6,x,0,0,x,6,8,4 (2x..x341)
8,x,8,0,x,4,0,4 (3x4.x1.2)
6,x,0,0,x,6,4,8 (2x..x314)
x,8,11,0,x,9,8,x (x14.x32x)
x,8,11,0,9,x,8,x (x14.3x2x)
8,x,0,0,x,4,4,8 (3x..x124)
8,x,4,0,4,x,0,8 (3x1.2x.4)
6,x,8,0,x,6,0,4 (2x4.x3.1)
6,x,4,0,6,x,0,8 (2x1.3x.4)
6,x,8,0,6,x,0,4 (2x4.3x.1)
8,x,0,0,4,x,8,4 (3x..1x42)
x,8,8,0,9,x,11,x (x12.3x4x)
8,x,4,0,x,4,0,8 (3x1.x2.4)
8,x,0,0,4,x,4,8 (3x..1x24)
6,x,0,0,6,x,8,4 (2x..3x41)
6,x,4,0,x,6,0,8 (2x1.x3.4)
8,x,0,0,x,4,8,4 (3x..x142)
8,x,8,0,4,x,0,4 (3x4.1x.2)
8,x,11,0,x,9,0,8 (1x4.x3.2)
8,x,0,0,x,9,8,11 (1x..x324)
8,x,0,0,9,x,8,11 (1x..3x24)
8,x,11,0,9,x,0,8 (1x4.3x.2)
8,x,0,0,9,x,11,8 (1x..3x42)
8,x,8,0,x,9,0,11 (1x2.x3.4)
8,x,0,0,x,9,11,8 (1x..x342)
8,x,8,0,9,x,0,11 (1x2.3x.4)
x,8,11,0,x,9,x,8 (x14.x3x2)
x,8,x,0,x,9,8,11 (x1x.x324)
x,8,11,0,9,x,x,8 (x14.3xx2)
x,8,x,0,x,9,11,8 (x1x.x342)
x,8,8,0,x,9,x,11 (x12.x3x4)
x,8,8,0,9,x,x,11 (x12.3xx4)
x,8,x,0,9,x,8,11 (x1x.3x24)
x,8,x,0,9,x,11,8 (x1x.3x42)
8,x,11,x,9,x,8,0 (1x4x3x2.)
8,x,11,0,9,x,8,x (1x4.3x2x)
8,x,11,0,x,9,8,x (1x4.x32x)
8,x,8,x,9,x,11,0 (1x2x3x4.)
8,x,8,0,9,x,11,x (1x2.3x4x)
8,x,11,x,x,9,8,0 (1x4xx32.)
8,x,8,0,x,9,11,x (1x2.x34x)
8,x,8,x,x,9,11,0 (1x2xx34.)
8,x,x,0,9,x,11,8 (1xx.3x42)
8,x,8,x,9,x,0,11 (1x2x3x.4)
8,x,11,x,x,9,0,8 (1x4xx3.2)
8,x,8,x,x,9,0,11 (1x2xx3.4)
8,x,x,0,x,9,11,8 (1xx.x342)
8,x,0,x,x,9,11,8 (1x.xx342)
8,x,0,x,9,x,8,11 (1x.x3x24)
8,x,x,0,9,x,8,11 (1xx.3x24)
8,x,8,0,x,9,x,11 (1x2.x3x4)
8,x,0,x,9,x,11,8 (1x.x3x42)
8,x,11,0,9,x,x,8 (1x4.3xx2)
8,x,0,x,x,9,8,11 (1x.xx324)
8,x,x,0,x,9,8,11 (1xx.x324)
8,x,11,0,x,9,x,8 (1x4.x3x2)
8,x,11,x,9,x,0,8 (1x4x3x.2)
8,x,8,0,9,x,x,11 (1x2.3xx4)