Mandolin Chord Chart and Tabs in Modal D Tuning

도bm7♯11, 도b−7♯11
Notes: 도♭, 미♭♭, 솔♭, 시♭♭, 파
x,2,3,0,0,2,4,0 (x13..24.)
x,2,4,0,0,2,3,0 (x14..23.)
x,2,3,0,2,0,4,0 (x13.2.4.)
x,2,4,0,2,0,3,0 (x14.2.3.)
x,2,4,0,0,2,0,3 (x14..2.3)
x,2,4,0,2,0,0,3 (x14.2..3)
x,2,0,0,0,2,4,3 (x1...243)
x,2,0,0,2,0,3,4 (x1..2.34)
x,2,3,0,0,2,0,4 (x13..2.4)
x,2,0,0,2,0,4,3 (x1..2.43)
x,2,3,0,2,0,0,4 (x13.2..4)
x,2,0,0,0,2,3,4 (x1...234)
x,x,x,9,9,8,7,0 (xxx3421.)
x,x,x,9,8,9,7,0 (xxx3241.)
x,x,x,9,8,9,0,7 (xxx324.1)
x,x,x,9,9,8,0,7 (xxx342.1)
x,2,4,3,2,0,x,0 (x1432.x.)
x,2,3,4,2,0,0,x (x1342..x)
x,2,4,3,2,0,0,x (x1432..x)
x,2,3,4,2,0,x,0 (x1342.x.)
x,2,4,3,0,2,x,0 (x143.2x.)
x,2,3,4,0,2,x,0 (x134.2x.)
x,2,3,4,0,2,0,x (x134.2.x)
x,2,4,3,0,2,0,x (x143.2.x)
0,2,4,0,2,x,3,0 (.14.2x3.)
0,2,3,0,x,2,4,0 (.13.x24.)
2,2,4,0,0,x,3,0 (124..x3.)
2,2,3,0,0,x,4,0 (123..x4.)
0,2,4,0,x,2,3,0 (.14.x23.)
0,2,3,0,2,x,4,0 (.13.2x4.)
2,2,3,0,x,0,4,0 (123.x.4.)
2,2,4,0,x,0,3,0 (124.x.3.)
x,2,4,0,0,2,3,x (x14..23x)
x,2,3,0,2,0,4,x (x13.2.4x)
x,2,4,x,2,0,3,0 (x14x2.3.)
x,2,x,4,2,0,3,0 (x1x42.3.)
x,2,3,0,0,2,4,x (x13..24x)
x,2,0,3,0,2,4,x (x1.3.24x)
x,2,4,x,0,2,3,0 (x14x.23.)
x,2,4,0,2,0,3,x (x14.2.3x)
x,2,x,3,0,2,4,0 (x1x3.24.)
x,2,x,4,0,2,3,0 (x1x4.23.)
x,2,3,x,0,2,4,0 (x13x.24.)
x,2,0,4,2,0,3,x (x1.42.3x)
x,2,x,3,2,0,4,0 (x1x32.4.)
x,2,0,4,0,2,3,x (x1.4.23x)
x,2,3,x,2,0,4,0 (x13x2.4.)
x,2,0,3,2,0,4,x (x1.32.4x)
0,2,0,0,x,2,4,3 (.1..x243)
2,2,0,0,x,0,4,3 (12..x.43)
0,2,0,0,2,x,4,3 (.1..2x43)
2,2,0,0,0,x,4,3 (12...x43)
2,2,3,0,0,x,0,4 (123..x.4)
0,2,3,0,2,x,0,4 (.13.2x.4)
0,2,4,0,x,2,0,3 (.14.x2.3)
2,2,4,0,x,0,0,3 (124.x..3)
0,2,3,0,x,2,0,4 (.13.x2.4)
2,2,0,0,0,x,3,4 (12...x34)
2,2,4,0,0,x,0,3 (124..x.3)
0,2,0,0,2,x,3,4 (.1..2x34)
0,2,4,0,2,x,0,3 (.14.2x.3)
2,2,0,0,x,0,3,4 (12..x.34)
0,2,0,0,x,2,3,4 (.1..x234)
2,2,3,0,x,0,0,4 (123.x..4)
x,2,0,4,2,0,x,3 (x1.42.x3)
x,2,3,0,0,5,4,x (x12..43x)
x,2,0,x,0,2,4,3 (x1.x.243)
x,2,3,x,2,0,0,4 (x13x2..4)
x,2,x,0,2,0,3,4 (x1x.2.34)
x,2,4,0,0,5,3,x (x13..42x)
x,2,x,0,2,0,4,3 (x1x.2.43)
x,2,0,x,2,0,4,3 (x1.x2.43)
x,2,0,x,2,0,3,4 (x1.x2.34)
x,2,x,3,0,2,0,4 (x1x3.2.4)
x,2,0,3,0,2,x,4 (x1.3.2x4)
x,2,x,4,0,2,0,3 (x1x4.2.3)
x,2,3,0,0,2,x,4 (x13..2x4)
x,2,4,x,0,2,0,3 (x14x.2.3)
x,2,0,3,2,0,x,4 (x1.32.x4)
x,2,x,4,2,0,0,3 (x1x42..3)
x,2,x,0,0,2,3,4 (x1x..234)
x,2,4,x,2,0,0,3 (x14x2..3)
x,2,3,x,0,2,0,4 (x13x.2.4)
x,2,3,0,2,0,x,4 (x13.2.x4)
x,2,4,0,5,0,3,x (x13.4.2x)
x,2,3,0,5,0,4,x (x12.4.3x)
x,2,0,x,0,2,3,4 (x1.x.234)
x,2,x,0,0,2,4,3 (x1x..243)
x,2,x,3,2,0,0,4 (x1x32..4)
x,2,4,0,2,0,x,3 (x14.2.x3)
x,2,0,4,0,2,x,3 (x1.4.2x3)
x,2,4,0,0,2,x,3 (x14..2x3)
x,x,7,9,9,8,0,x (xx1342.x)
x,x,7,9,9,8,x,0 (xx1342x.)
x,x,7,9,8,9,0,x (xx1324.x)
x,x,7,9,8,9,x,0 (xx1324x.)
x,2,x,0,5,0,4,3 (x1x.4.32)
x,2,3,0,0,5,x,4 (x12..4x3)
x,2,x,0,0,5,3,4 (x1x..423)
x,2,x,0,0,5,4,3 (x1x..432)
x,2,4,0,5,0,x,3 (x13.4.x2)
x,2,x,0,5,0,3,4 (x1x.4.23)
x,2,4,0,0,5,x,3 (x13..4x2)
x,2,3,0,5,0,x,4 (x12.4.x3)
x,x,0,9,9,8,7,x (xx.3421x)
x,x,0,9,8,9,7,x (xx.3241x)
x,x,0,9,9,8,x,7 (xx.342x1)
x,x,0,9,8,9,x,7 (xx.324x1)
2,2,4,3,0,x,0,x (1243.x.x)
2,2,3,4,x,0,x,0 (1234x.x.)
2,2,4,3,x,0,0,x (1243x..x)
2,2,4,3,x,0,x,0 (1243x.x.)
2,2,3,4,x,0,0,x (1234x..x)
2,2,3,4,0,x,x,0 (1234.xx.)
2,2,4,3,0,x,x,0 (1243.xx.)
2,2,3,4,0,x,0,x (1234.x.x)
0,2,4,3,2,x,x,0 (.1432xx.)
0,2,3,4,2,x,x,0 (.1342xx.)
0,2,4,3,2,x,0,x (.1432x.x)
0,2,3,4,2,x,0,x (.1342x.x)
0,2,3,4,x,2,0,x (.134x2.x)
0,2,4,3,x,2,0,x (.143x2.x)
0,2,4,3,x,2,x,0 (.143x2x.)
0,2,3,4,x,2,x,0 (.134x2x.)
2,2,4,x,x,0,3,0 (124xx.3.)
2,2,x,3,0,x,4,0 (12x3.x4.)
0,2,3,x,2,x,4,0 (.13x2x4.)
0,2,4,x,x,2,3,0 (.14xx23.)
0,2,x,3,2,x,4,0 (.1x32x4.)
2,2,3,x,x,0,4,0 (123xx.4.)
2,2,x,4,0,x,3,0 (12x4.x3.)
2,2,x,3,x,0,4,0 (12x3x.4.)
2,2,4,0,0,x,3,x (124..x3x)
2,2,0,4,0,x,3,x (12.4.x3x)
0,2,4,0,2,x,3,x (.14.2x3x)
0,2,0,4,2,x,3,x (.1.42x3x)
0,2,x,4,x,2,3,0 (.1x4x23.)
2,2,4,0,x,0,3,x (124.x.3x)
2,2,x,4,x,0,3,0 (12x4x.3.)
2,2,0,4,x,0,3,x (12.4x.3x)
2,2,4,x,0,x,3,0 (124x.x3.)
0,2,4,0,x,2,3,x (.14.x23x)
0,2,0,4,x,2,3,x (.1.4x23x)
0,2,3,x,x,2,4,0 (.13xx24.)
0,2,x,4,2,x,3,0 (.1x42x3.)
0,2,4,x,2,x,3,0 (.14x2x3.)
2,2,3,0,0,x,4,x (123..x4x)
0,2,x,3,x,2,4,0 (.1x3x24.)
2,2,0,3,0,x,4,x (12.3.x4x)
0,2,3,0,2,x,4,x (.13.2x4x)
0,2,0,3,2,x,4,x (.1.32x4x)
2,2,3,0,x,0,4,x (123.x.4x)
2,2,0,3,x,0,4,x (12.3x.4x)
0,2,3,0,x,2,4,x (.13.x24x)
0,2,0,3,x,2,4,x (.1.3x24x)
2,2,3,x,0,x,4,0 (123x.x4.)
5,2,4,0,x,0,3,x (413.x.2x)
2,2,4,x,0,x,0,3 (124x.x.3)
2,2,x,4,0,x,0,3 (12x4.x.3)
0,2,4,x,2,x,0,3 (.14x2x.3)
0,2,x,0,x,2,3,4 (.1x.x234)
0,2,x,4,2,x,0,3 (.1x42x.3)
2,2,4,x,x,0,0,3 (124xx..3)
0,2,0,x,x,2,3,4 (.1.xx234)
2,2,x,4,x,0,0,3 (12x4x..3)
2,2,x,0,x,0,3,4 (12x.x.34)
5,2,3,0,x,0,4,x (412.x.3x)
2,2,0,x,x,0,3,4 (12.xx.34)
0,2,4,x,x,2,0,3 (.14xx2.3)
0,2,x,0,2,x,3,4 (.1x.2x34)
0,2,x,4,x,2,0,3 (.1x4x2.3)
0,2,3,0,5,x,4,x (.12.4x3x)
0,2,0,x,2,x,3,4 (.1.x2x34)
0,2,3,0,x,5,4,x (.12.x43x)
2,2,x,0,0,x,3,4 (12x..x34)
2,2,0,x,0,x,4,3 (12.x.x43)
2,2,x,0,0,x,4,3 (12x..x43)
2,2,0,x,0,x,3,4 (12.x.x34)
0,2,0,4,x,2,x,3 (.1.4x2x3)
0,2,0,x,2,x,4,3 (.1.x2x43)
0,2,x,0,2,x,4,3 (.1x.2x43)
0,2,4,0,x,2,x,3 (.14.x2x3)
0,2,x,3,x,2,0,4 (.1x3x2.4)
5,2,4,0,0,x,3,x (413..x2x)
0,2,3,x,x,2,0,4 (.13xx2.4)
2,2,0,x,x,0,4,3 (12.xx.43)
2,2,x,0,x,0,4,3 (12x.x.43)
2,2,4,0,0,x,x,3 (124..xx3)
5,2,3,0,0,x,4,x (412..x3x)
2,2,0,4,0,x,x,3 (12.4.xx3)
2,2,x,3,x,0,0,4 (12x3x..4)
2,2,3,x,x,0,0,4 (123xx..4)
0,2,x,3,2,x,0,4 (.1x32x.4)
2,2,0,4,x,0,x,3 (12.4x.x3)
0,2,0,x,x,2,4,3 (.1.xx243)
0,2,x,0,x,2,4,3 (.1x.x243)
0,2,4,0,x,5,3,x (.13.x42x)
0,2,4,0,5,x,3,x (.13.4x2x)
0,2,3,x,2,x,0,4 (.13x2x.4)
2,2,4,0,x,0,x,3 (124.x.x3)
2,2,x,3,0,x,0,4 (12x3.x.4)
2,2,3,x,0,x,0,4 (123x.x.4)
0,2,4,0,2,x,x,3 (.14.2xx3)
0,2,0,4,2,x,x,3 (.1.42xx3)
0,2,0,3,x,2,x,4 (.1.3x2x4)
2,2,3,0,0,x,x,4 (123..xx4)
0,2,3,0,x,2,x,4 (.13.x2x4)
2,2,0,3,0,x,x,4 (12.3.xx4)
0,2,3,0,2,x,x,4 (.13.2xx4)
0,2,0,3,2,x,x,4 (.1.32xx4)
2,2,0,3,x,0,x,4 (12.3x.x4)
2,2,3,0,x,0,x,4 (123.x.x4)
x,2,4,x,5,0,3,x (x13x4.2x)
x,2,4,x,0,5,3,x (x13x.42x)
x,2,3,x,0,5,4,x (x12x.43x)
x,2,3,x,5,0,4,x (x12x4.3x)
0,2,x,0,x,5,3,4 (.1x.x423)
5,2,3,0,0,x,x,4 (412..xx3)
5,2,x,0,0,x,3,4 (41x..x23)
5,2,x,0,0,x,4,3 (41x..x32)
0,2,3,0,x,5,x,4 (.12.x4x3)
0,2,x,0,x,5,4,3 (.1x.x432)
5,2,x,0,x,0,3,4 (41x.x.23)
5,2,4,0,x,0,x,3 (413.x.x2)
5,2,3,0,x,0,x,4 (412.x.x3)
0,2,x,0,5,x,3,4 (.1x.4x23)
0,2,4,0,5,x,x,3 (.13.4xx2)
5,2,4,0,0,x,x,3 (413..xx2)
5,2,x,0,x,0,4,3 (41x.x.32)
0,2,x,0,5,x,4,3 (.1x.4x32)
0,2,3,0,5,x,x,4 (.12.4xx3)
0,2,4,0,x,5,x,3 (.13.x4x2)
x,2,x,x,0,5,4,3 (x1xx.432)
x,2,4,x,5,0,x,3 (x13x4.x2)
x,2,4,x,0,5,x,3 (x13x.4x2)
x,2,3,x,5,0,x,4 (x12x4.x3)
x,2,x,x,5,0,3,4 (x1xx4.23)
x,2,x,x,0,5,3,4 (x1xx.423)
x,2,x,x,5,0,4,3 (x1xx4.32)
x,2,3,x,0,5,x,4 (x12x.4x3)
8,x,7,9,9,x,0,x (2x134x.x)
9,x,7,9,8,x,0,x (3x142x.x)
9,x,7,9,8,x,x,0 (3x142xx.)
8,x,7,9,9,x,x,0 (2x134xx.)
9,x,7,9,x,8,0,x (3x14x2.x)
9,x,7,9,x,8,x,0 (3x14x2x.)
8,x,7,9,x,9,x,0 (2x13x4x.)
8,x,7,9,x,9,0,x (2x13x4.x)
0,2,4,x,5,x,3,x (.13x4x2x)
5,2,4,x,0,x,3,x (413x.x2x)
0,2,4,x,x,5,3,x (.13xx42x)
0,2,3,x,5,x,4,x (.12x4x3x)
5,2,3,x,x,0,4,x (412xx.3x)
5,2,3,x,0,x,4,x (412x.x3x)
0,2,3,x,x,5,4,x (.12xx43x)
5,2,4,x,x,0,3,x (413xx.2x)
8,x,x,9,x,9,7,0 (2xx3x41.)
8,x,0,9,9,x,7,x (2x.34x1x)
9,x,x,9,x,8,7,0 (3xx4x21.)
8,x,x,9,9,x,7,0 (2xx34x1.)
9,x,x,9,8,x,7,0 (3xx42x1.)
9,x,0,9,8,x,7,x (3x.42x1x)
9,x,0,9,x,8,7,x (3x.4x21x)
8,x,0,9,x,9,7,x (2x.3x41x)
0,2,x,x,x,5,3,4 (.1xxx423)
0,2,4,x,x,5,x,3 (.13xx4x2)
5,2,x,x,x,0,3,4 (41xxx.23)
5,2,4,x,0,x,x,3 (413x.xx2)
5,2,x,x,0,x,4,3 (41xx.x32)
0,2,x,x,5,x,4,3 (.1xx4x32)
5,2,x,x,x,0,4,3 (41xxx.32)
5,2,x,x,0,x,3,4 (41xx.x23)
0,2,x,x,5,x,3,4 (.1xx4x23)
0,2,x,x,x,5,4,3 (.1xxx432)
0,2,3,x,x,5,x,4 (.12xx4x3)
5,2,4,x,x,0,x,3 (413xx.x2)
0,2,3,x,5,x,x,4 (.12x4xx3)
0,2,4,x,5,x,x,3 (.13x4xx2)
5,2,3,x,0,x,x,4 (412x.xx3)
5,2,3,x,x,0,x,4 (412xx.x3)
9,x,0,9,x,8,x,7 (3x.4x2x1)
8,x,0,9,x,9,x,7 (2x.3x4x1)
8,x,0,9,9,x,x,7 (2x.34xx1)
9,x,x,9,8,x,0,7 (3xx42x.1)
8,x,x,9,9,x,0,7 (2xx34x.1)
9,x,x,9,x,8,0,7 (3xx4x2.1)
9,x,0,9,8,x,x,7 (3x.42xx1)
8,x,x,9,x,9,0,7 (2xx3x4.1)